283 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLQT05
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLQT05(M,N,L,NB,RESULT)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER LWORK, M, N, L, NB, LDT
 | 
						|
*       .. Return values ..
 | 
						|
*       REAL RESULT(6)
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> SQRT05 tests STPLQT and STPMLQT.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          Number of rows in lower part of the test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          Number of columns in test matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>          The number of rows of the upper trapezoidal part the
 | 
						|
*>          lower test matrix.  0 <= L <= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          Block size of test matrix.  NB <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (6)
 | 
						|
*>          Results of each of the six tests below.
 | 
						|
*>
 | 
						|
*>          RESULT(1) = | A - Q R |
 | 
						|
*>          RESULT(2) = | I - Q^H Q |
 | 
						|
*>          RESULT(3) = | Q C - Q C |
 | 
						|
*>          RESULT(4) = | Q^H C - Q^H C |
 | 
						|
*>          RESULT(5) = | C Q - C Q |
 | 
						|
*>          RESULT(6) = | C Q^H - C Q^H |
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLQT05(M,N,L,NB,RESULT)
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER  LWORK, M, N, L, NB, LDT
 | 
						|
*     .. Return values ..
 | 
						|
      REAL     RESULT(6)
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local allocatable arrays
 | 
						|
      REAL, ALLOCATABLE :: AF(:,:), Q(:,:),
 | 
						|
     $  R(:,:), RWORK(:), WORK( : ), T(:,:),
 | 
						|
     $  CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL ONE, ZERO
 | 
						|
      PARAMETER( ZERO = 0.0, ONE = 1.0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER     INFO, J, K, N2, NP1,i
 | 
						|
      REAL        ANORM, EPS, RESID, CNORM, DNORM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL        SLAMCH, SLANGE, SLANSY
 | 
						|
      LOGICAL     LSAME
 | 
						|
      EXTERNAL    SLAMCH, SLANGE, SLANSY, LSAME
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA ISEED / 1988, 1989, 1990, 1991 /
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      K = M
 | 
						|
      N2 = M+N
 | 
						|
      IF( N.GT.0 ) THEN
 | 
						|
         NP1 = M+1
 | 
						|
      ELSE
 | 
						|
         NP1 = 1
 | 
						|
      END IF
 | 
						|
      LWORK = N2*N2*NB
 | 
						|
*
 | 
						|
*     Dynamically allocate all arrays
 | 
						|
*
 | 
						|
      ALLOCATE(A(M,N2),AF(M,N2),Q(N2,N2),R(N2,N2),RWORK(N2),
 | 
						|
     $           WORK(LWORK),T(NB,M),C(N2,M),CF(N2,M),
 | 
						|
     $           D(M,N2),DF(M,N2) )
 | 
						|
*
 | 
						|
*     Put random stuff into A
 | 
						|
*
 | 
						|
      LDT=NB
 | 
						|
      CALL SLASET( 'Full', M, N2, ZERO, ZERO, A, M )
 | 
						|
      CALL SLASET( 'Full', NB, M, ZERO, ZERO, T, NB )
 | 
						|
      DO J=1,M
 | 
						|
         CALL SLARNV( 2, ISEED, M-J+1, A( J, J ) )
 | 
						|
      END DO
 | 
						|
      IF( N.GT.0 ) THEN
 | 
						|
         DO J=1,N-L
 | 
						|
            CALL SLARNV( 2, ISEED, M, A( 1, MIN(N+M,M+1) + J - 1 ) )
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      IF( L.GT.0 ) THEN
 | 
						|
         DO J=1,L
 | 
						|
            CALL SLARNV( 2, ISEED, M-J+1, A( J, MIN(N+M,N+M-L+1)
 | 
						|
     $          + J - 1 ) )
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Copy the matrix A to the array AF.
 | 
						|
*
 | 
						|
      CALL SLACPY( 'Full', M, N2, A, M, AF, M )
 | 
						|
*
 | 
						|
*     Factor the matrix A in the array AF.
 | 
						|
*
 | 
						|
      CALL STPLQT( M,N,L,NB,AF,M,AF(1,NP1),M,T,LDT,WORK,INFO)
 | 
						|
*
 | 
						|
*     Generate the (M+N)-by-(M+N) matrix Q by applying H to I
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N2, N2, ZERO, ONE, Q, N2 )
 | 
						|
      CALL SGEMLQT( 'L', 'N', N2, N2, K, NB, AF, M, T, LDT, Q, N2,
 | 
						|
     $              WORK, INFO )
 | 
						|
*
 | 
						|
*     Copy L
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N2, N2, ZERO, ZERO, R, N2 )
 | 
						|
      CALL SLACPY( 'Lower', M, N2, AF, M, R, N2 )
 | 
						|
*
 | 
						|
*     Compute |L - A*Q*T| / |A| and store in RESULT(1)
 | 
						|
*
 | 
						|
      CALL SGEMM( 'N', 'T', M, N2, N2, -ONE,  A, M, Q, N2, ONE, R, N2)
 | 
						|
      ANORM = SLANGE( '1', M, N2, A, M, RWORK )
 | 
						|
      RESID = SLANGE( '1', M, N2, R, N2, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = RESID / (EPS*ANORM*MAX(1,N2))
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute |I - Q*Q'| and store in RESULT(2)
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N2, N2, ZERO, ONE, R, N2 )
 | 
						|
      CALL SSYRK( 'U', 'N', N2, N2, -ONE, Q, N2, ONE, R, N2 )
 | 
						|
      RESID = SLANSY( '1', 'Upper', N2, R, N2, RWORK )
 | 
						|
      RESULT( 2 ) = RESID / (EPS*MAX(1,N2))
 | 
						|
*
 | 
						|
*     Generate random m-by-n matrix C and a copy CF
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N2, M, ZERO, ONE, C, N2 )
 | 
						|
      DO J=1,M
 | 
						|
         CALL SLARNV( 2, ISEED, N2, C( 1, J ) )
 | 
						|
      END DO
 | 
						|
      CNORM = SLANGE( '1', N2, M, C, N2, RWORK)
 | 
						|
      CALL SLACPY( 'Full', N2, M, C, N2, CF, N2 )
 | 
						|
*
 | 
						|
*     Apply Q to C as Q*C
 | 
						|
*
 | 
						|
      CALL STPMLQT( 'L','N', N,M,K,L,NB,AF(1, NP1),M,T,LDT,CF,N2,
 | 
						|
     $               CF(NP1,1),N2,WORK,INFO)
 | 
						|
*
 | 
						|
*     Compute |Q*C - Q*C| / |C|
 | 
						|
*
 | 
						|
      CALL SGEMM( 'N', 'N', N2, M, N2, -ONE, Q, N2, C, N2, ONE, CF, N2 )
 | 
						|
      RESID = SLANGE( '1', N2, M, CF, N2, RWORK )
 | 
						|
      IF( CNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 3 ) = RESID / (EPS*MAX(1,N2)*CNORM)
 | 
						|
      ELSE
 | 
						|
         RESULT( 3 ) = ZERO
 | 
						|
      END IF
 | 
						|
 | 
						|
*
 | 
						|
*     Copy C into CF again
 | 
						|
*
 | 
						|
      CALL SLACPY( 'Full', N2, M, C, N2, CF, N2 )
 | 
						|
*
 | 
						|
*     Apply Q to C as QT*C
 | 
						|
*
 | 
						|
      CALL STPMLQT( 'L','T',N,M,K,L,NB,AF(1,NP1),M,T,LDT,CF,N2,
 | 
						|
     $              CF(NP1,1),N2,WORK,INFO)
 | 
						|
*
 | 
						|
*     Compute |QT*C - QT*C| / |C|
 | 
						|
*
 | 
						|
      CALL SGEMM('T','N',N2,M,N2,-ONE,Q,N2,C,N2,ONE,CF,N2)
 | 
						|
      RESID = SLANGE( '1', N2, M, CF, N2, RWORK )
 | 
						|
 | 
						|
      IF( CNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 4 ) = RESID / (EPS*MAX(1,N2)*CNORM)
 | 
						|
      ELSE
 | 
						|
         RESULT( 4 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Generate random m-by-n matrix D and a copy DF
 | 
						|
*
 | 
						|
      DO J=1,N2
 | 
						|
         CALL SLARNV( 2, ISEED, M, D( 1, J ) )
 | 
						|
      END DO
 | 
						|
      DNORM = SLANGE( '1', M, N2, D, M, RWORK)
 | 
						|
      CALL SLACPY( 'Full', M, N2, D, M, DF, M )
 | 
						|
*
 | 
						|
*     Apply Q to D as D*Q
 | 
						|
*
 | 
						|
      CALL STPMLQT('R','N',M,N,K,L,NB,AF(1,NP1),M,T,LDT,DF,M,
 | 
						|
     $             DF(1,NP1),M,WORK,INFO)
 | 
						|
*
 | 
						|
*     Compute |D*Q - D*Q| / |D|
 | 
						|
*
 | 
						|
      CALL SGEMM('N','N',M,N2,N2,-ONE,D,M,Q,N2,ONE,DF,M)
 | 
						|
      RESID = SLANGE('1',M, N2,DF,M,RWORK )
 | 
						|
      IF( CNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 5 ) = RESID / (EPS*MAX(1,N2)*DNORM)
 | 
						|
      ELSE
 | 
						|
         RESULT( 5 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Copy D into DF again
 | 
						|
*
 | 
						|
      CALL SLACPY('Full',M,N2,D,M,DF,M )
 | 
						|
*
 | 
						|
*     Apply Q to D as D*QT
 | 
						|
*
 | 
						|
      CALL STPMLQT('R','T',M,N,K,L,NB,AF(1,NP1),M,T,LDT,DF,M,
 | 
						|
     $             DF(1,NP1),M,WORK,INFO)
 | 
						|
 | 
						|
*
 | 
						|
*     Compute |D*QT - D*QT| / |D|
 | 
						|
*
 | 
						|
      CALL SGEMM( 'N', 'T', M, N2, N2, -ONE, D, M, Q, N2, ONE, DF, M )
 | 
						|
      RESID = SLANGE( '1', M, N2, DF, M, RWORK )
 | 
						|
      IF( CNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 6 ) = RESID / (EPS*MAX(1,N2)*DNORM)
 | 
						|
      ELSE
 | 
						|
         RESULT( 6 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Deallocate all arrays
 | 
						|
*
 | 
						|
      DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
 | 
						|
      RETURN
 | 
						|
      END
 |