1032 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1032 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static logical c_false = FALSE_;
 | |
| static logical c_true = TRUE_;
 | |
| 
 | |
| /* > \brief \b ZHSEIN */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZHSEIN + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhsein.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhsein.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhsein.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, */
 | |
| /*                          LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, */
 | |
| /*                          IFAILR, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          EIGSRC, INITV, SIDE */
 | |
| /*       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       INTEGER            IFAILL( * ), IFAILR( * ) */
 | |
| /*       DOUBLE PRECISION   RWORK( * ) */
 | |
| /*       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
 | |
| /*      $                   W( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZHSEIN uses inverse iteration to find specified right and/or left */
 | |
| /* > eigenvectors of a complex upper Hessenberg matrix H. */
 | |
| /* > */
 | |
| /* > The right eigenvector x and the left eigenvector y of the matrix H */
 | |
| /* > corresponding to an eigenvalue w are defined by: */
 | |
| /* > */
 | |
| /* >              H * x = w * x,     y**h * H = w * y**h */
 | |
| /* > */
 | |
| /* > where y**h denotes the conjugate transpose of the vector y. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          = 'R': compute right eigenvectors only; */
 | |
| /* >          = 'L': compute left eigenvectors only; */
 | |
| /* >          = 'B': compute both right and left eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] EIGSRC */
 | |
| /* > \verbatim */
 | |
| /* >          EIGSRC is CHARACTER*1 */
 | |
| /* >          Specifies the source of eigenvalues supplied in W: */
 | |
| /* >          = 'Q': the eigenvalues were found using ZHSEQR; thus, if */
 | |
| /* >                 H has zero subdiagonal elements, and so is */
 | |
| /* >                 block-triangular, then the j-th eigenvalue can be */
 | |
| /* >                 assumed to be an eigenvalue of the block containing */
 | |
| /* >                 the j-th row/column.  This property allows ZHSEIN to */
 | |
| /* >                 perform inverse iteration on just one diagonal block. */
 | |
| /* >          = 'N': no assumptions are made on the correspondence */
 | |
| /* >                 between eigenvalues and diagonal blocks.  In this */
 | |
| /* >                 case, ZHSEIN must always perform inverse iteration */
 | |
| /* >                 using the whole matrix H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] INITV */
 | |
| /* > \verbatim */
 | |
| /* >          INITV is CHARACTER*1 */
 | |
| /* >          = 'N': no initial vectors are supplied; */
 | |
| /* >          = 'U': user-supplied initial vectors are stored in the arrays */
 | |
| /* >                 VL and/or VR. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          Specifies the eigenvectors to be computed. To select the */
 | |
| /* >          eigenvector corresponding to the eigenvalue W(j), */
 | |
| /* >          SELECT(j) must be set to .TRUE.. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix H.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is COMPLEX*16 array, dimension (LDH,N) */
 | |
| /* >          The upper Hessenberg matrix H. */
 | |
| /* >          If a NaN is detected in H, the routine will return with INFO=-6. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          The leading dimension of the array H.  LDH >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is COMPLEX*16 array, dimension (N) */
 | |
| /* >          On entry, the eigenvalues of H. */
 | |
| /* >          On exit, the real parts of W may have been altered since */
 | |
| /* >          close eigenvalues are perturbed slightly in searching for */
 | |
| /* >          independent eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is COMPLEX*16 array, dimension (LDVL,MM) */
 | |
| /* >          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
 | |
| /* >          contain starting vectors for the inverse iteration for the */
 | |
| /* >          left eigenvectors; the starting vector for each eigenvector */
 | |
| /* >          must be in the same column in which the eigenvector will be */
 | |
| /* >          stored. */
 | |
| /* >          On exit, if SIDE = 'L' or 'B', the left eigenvectors */
 | |
| /* >          specified by SELECT will be stored consecutively in the */
 | |
| /* >          columns of VL, in the same order as their eigenvalues. */
 | |
| /* >          If SIDE = 'R', VL is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of the array VL. */
 | |
| /* >          LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is COMPLEX*16 array, dimension (LDVR,MM) */
 | |
| /* >          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
 | |
| /* >          contain starting vectors for the inverse iteration for the */
 | |
| /* >          right eigenvectors; the starting vector for each eigenvector */
 | |
| /* >          must be in the same column in which the eigenvector will be */
 | |
| /* >          stored. */
 | |
| /* >          On exit, if SIDE = 'R' or 'B', the right eigenvectors */
 | |
| /* >          specified by SELECT will be stored consecutively in the */
 | |
| /* >          columns of VR, in the same order as their eigenvalues. */
 | |
| /* >          If SIDE = 'L', VR is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the array VR. */
 | |
| /* >          LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MM */
 | |
| /* > \verbatim */
 | |
| /* >          MM is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR. MM >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR required to */
 | |
| /* >          store the eigenvectors (= the number of .TRUE. elements in */
 | |
| /* >          SELECT). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (N*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IFAILL */
 | |
| /* > \verbatim */
 | |
| /* >          IFAILL is INTEGER array, dimension (MM) */
 | |
| /* >          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
 | |
| /* >          eigenvector in the i-th column of VL (corresponding to the */
 | |
| /* >          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
 | |
| /* >          eigenvector converged satisfactorily. */
 | |
| /* >          If SIDE = 'R', IFAILL is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IFAILR */
 | |
| /* > \verbatim */
 | |
| /* >          IFAILR is INTEGER array, dimension (MM) */
 | |
| /* >          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
 | |
| /* >          eigenvector in the i-th column of VR (corresponding to the */
 | |
| /* >          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
 | |
| /* >          eigenvector converged satisfactorily. */
 | |
| /* >          If SIDE = 'L', IFAILR is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  if INFO = i, i is the number of eigenvectors which */
 | |
| /* >                failed to converge; see IFAILL and IFAILR for further */
 | |
| /* >                details. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Each eigenvector is normalized so that the element of largest */
 | |
| /* >  magnitude has magnitude 1; here the magnitude of a complex number */
 | |
| /* >  (x,y) is taken to be |x|+|y|. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zhsein_(char *side, char *eigsrc, char *initv, logical *
 | |
| 	select, integer *n, doublecomplex *h__, integer *ldh, doublecomplex *
 | |
| 	w, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr,
 | |
| 	 integer *mm, integer *m, doublecomplex *work, doublereal *rwork, 
 | |
| 	integer *ifaill, integer *ifailr, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
 | |
| 	    i__2, i__3;
 | |
|     doublereal d__1, d__2;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal unfl;
 | |
|     integer i__, k;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     logical leftv, bothv;
 | |
|     doublereal hnorm;
 | |
|     integer kl;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     integer kr, ks;
 | |
|     doublecomplex wk;
 | |
|     extern logical disnan_(doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void zlaein_(
 | |
| 	    logical *, logical *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *);
 | |
|     extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublereal *);
 | |
|     logical noinit;
 | |
|     integer ldwork;
 | |
|     logical rightv, fromqr;
 | |
|     doublereal smlnum;
 | |
|     integer kln;
 | |
|     doublereal ulp, eps3;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     --w;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
|     --ifaill;
 | |
|     --ifailr;
 | |
| 
 | |
|     /* Function Body */
 | |
|     bothv = lsame_(side, "B");
 | |
|     rightv = lsame_(side, "R") || bothv;
 | |
|     leftv = lsame_(side, "L") || bothv;
 | |
| 
 | |
|     fromqr = lsame_(eigsrc, "Q");
 | |
| 
 | |
|     noinit = lsame_(initv, "N");
 | |
| 
 | |
| /*     Set M to the number of columns required to store the selected */
 | |
| /*     eigenvectors. */
 | |
| 
 | |
|     *m = 0;
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	if (select[k]) {
 | |
| 	    ++(*m);
 | |
| 	}
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! rightv && ! leftv) {
 | |
| 	*info = -1;
 | |
|     } else if (! fromqr && ! lsame_(eigsrc, "N")) {
 | |
| 	*info = -2;
 | |
|     } else if (! noinit && ! lsame_(initv, "U")) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldh < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldvl < 1 || leftv && *ldvl < *n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldvr < 1 || rightv && *ldvr < *n) {
 | |
| 	*info = -12;
 | |
|     } else if (*mm < *m) {
 | |
| 	*info = -13;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZHSEIN", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Set machine-dependent constants. */
 | |
| 
 | |
|     unfl = dlamch_("Safe minimum");
 | |
|     ulp = dlamch_("Precision");
 | |
|     smlnum = unfl * (*n / ulp);
 | |
| 
 | |
|     ldwork = *n;
 | |
| 
 | |
|     kl = 1;
 | |
|     kln = 0;
 | |
|     if (fromqr) {
 | |
| 	kr = 0;
 | |
|     } else {
 | |
| 	kr = *n;
 | |
|     }
 | |
|     ks = 1;
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	if (select[k]) {
 | |
| 
 | |
| /*           Compute eigenvector(s) corresponding to W(K). */
 | |
| 
 | |
| 	    if (fromqr) {
 | |
| 
 | |
| /*              If affiliation of eigenvalues is known, check whether */
 | |
| /*              the matrix splits. */
 | |
| 
 | |
| /*              Determine KL and KR such that 1 <= KL <= K <= KR <= N */
 | |
| /*              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
 | |
| /*              KR = N). */
 | |
| 
 | |
| /*              Then inverse iteration can be performed with the */
 | |
| /*              submatrix H(KL:N,KL:N) for a left eigenvector, and with */
 | |
| /*              the submatrix H(1:KR,1:KR) for a right eigenvector. */
 | |
| 
 | |
| 		i__2 = kl + 1;
 | |
| 		for (i__ = k; i__ >= i__2; --i__) {
 | |
| 		    i__3 = i__ + (i__ - 1) * h_dim1;
 | |
| 		    if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
 | |
| 			goto L30;
 | |
| 		    }
 | |
| /* L20: */
 | |
| 		}
 | |
| L30:
 | |
| 		kl = i__;
 | |
| 		if (k > kr) {
 | |
| 		    i__2 = *n - 1;
 | |
| 		    for (i__ = k; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + 1 + i__ * h_dim1;
 | |
| 			if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
 | |
| 			    goto L50;
 | |
| 			}
 | |
| /* L40: */
 | |
| 		    }
 | |
| L50:
 | |
| 		    kr = i__;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    if (kl != kln) {
 | |
| 		kln = kl;
 | |
| 
 | |
| /*              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
 | |
| /*              has not ben computed before. */
 | |
| 
 | |
| 		i__2 = kr - kl + 1;
 | |
| 		hnorm = zlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
 | |
| 			rwork[1]);
 | |
| 		if (disnan_(&hnorm)) {
 | |
| 		    *info = -6;
 | |
| 		    return;
 | |
| 		} else if (hnorm > 0.) {
 | |
| 		    eps3 = hnorm * ulp;
 | |
| 		} else {
 | |
| 		    eps3 = smlnum;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Perturb eigenvalue if it is close to any previous */
 | |
| /*           selected eigenvalues affiliated to the submatrix */
 | |
| /*           H(KL:KR,KL:KR). Close roots are modified by EPS3. */
 | |
| 
 | |
| 	    i__2 = k;
 | |
| 	    wk.r = w[i__2].r, wk.i = w[i__2].i;
 | |
| L60:
 | |
| 	    i__2 = kl;
 | |
| 	    for (i__ = k - 1; i__ >= i__2; --i__) {
 | |
| 		i__3 = i__;
 | |
| 		z__2.r = w[i__3].r - wk.r, z__2.i = w[i__3].i - wk.i;
 | |
| 		z__1.r = z__2.r, z__1.i = z__2.i;
 | |
| 		if (select[i__] && (d__1 = z__1.r, abs(d__1)) + (d__2 = 
 | |
| 			d_imag(&z__1), abs(d__2)) < eps3) {
 | |
| 		    z__1.r = wk.r + eps3, z__1.i = wk.i;
 | |
| 		    wk.r = z__1.r, wk.i = z__1.i;
 | |
| 		    goto L60;
 | |
| 		}
 | |
| /* L70: */
 | |
| 	    }
 | |
| 	    i__2 = k;
 | |
| 	    w[i__2].r = wk.r, w[i__2].i = wk.i;
 | |
| 
 | |
| 	    if (leftv) {
 | |
| 
 | |
| /*              Compute left eigenvector. */
 | |
| 
 | |
| 		i__2 = *n - kl + 1;
 | |
| 		zlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
 | |
| 			 &wk, &vl[kl + ks * vl_dim1], &work[1], &ldwork, &
 | |
| 			rwork[1], &eps3, &smlnum, &iinfo);
 | |
| 		if (iinfo > 0) {
 | |
| 		    ++(*info);
 | |
| 		    ifaill[ks] = k;
 | |
| 		} else {
 | |
| 		    ifaill[ks] = 0;
 | |
| 		}
 | |
| 		i__2 = kl - 1;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    i__3 = i__ + ks * vl_dim1;
 | |
| 		    vl[i__3].r = 0., vl[i__3].i = 0.;
 | |
| /* L80: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (rightv) {
 | |
| 
 | |
| /*              Compute right eigenvector. */
 | |
| 
 | |
| 		zlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wk, &vr[
 | |
| 			ks * vr_dim1 + 1], &work[1], &ldwork, &rwork[1], &
 | |
| 			eps3, &smlnum, &iinfo);
 | |
| 		if (iinfo > 0) {
 | |
| 		    ++(*info);
 | |
| 		    ifailr[ks] = k;
 | |
| 		} else {
 | |
| 		    ifailr[ks] = 0;
 | |
| 		}
 | |
| 		i__2 = *n;
 | |
| 		for (i__ = kr + 1; i__ <= i__2; ++i__) {
 | |
| 		    i__3 = i__ + ks * vr_dim1;
 | |
| 		    vr[i__3].r = 0., vr[i__3].i = 0.;
 | |
| /* L90: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    ++ks;
 | |
| 	}
 | |
| /* L100: */
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZHSEIN */
 | |
| 
 | |
| } /* zhsein_ */
 | |
| 
 |