1090 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1090 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__9 = 9;
 | |
| static integer c__0 = 0;
 | |
| static real c_b15 = 1.f;
 | |
| static integer c__1 = 1;
 | |
| static real c_b29 = 0.f;
 | |
| 
 | |
| /* > \brief \b SBDSDC */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SBDSDC + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsdc.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsdc.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsdc.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, */
 | |
| /*                          WORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          COMPQ, UPLO */
 | |
| /*       INTEGER            INFO, LDU, LDVT, N */
 | |
| /*       INTEGER            IQ( * ), IWORK( * ) */
 | |
| /*       REAL               D( * ), E( * ), Q( * ), U( LDU, * ), */
 | |
| /*      $                   VT( LDVT, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SBDSDC computes the singular value decomposition (SVD) of a real */
 | |
| /* > N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT, */
 | |
| /* > using a divide and conquer method, where S is a diagonal matrix */
 | |
| /* > with non-negative diagonal elements (the singular values of B), and */
 | |
| /* > U and VT are orthogonal matrices of left and right singular vectors, */
 | |
| /* > respectively. SBDSDC can be used to compute all singular values, */
 | |
| /* > and optionally, singular vectors or singular vectors in compact form. */
 | |
| /* > */
 | |
| /* > This code makes very mild assumptions about floating point */
 | |
| /* > arithmetic. It will work on machines with a guard digit in */
 | |
| /* > add/subtract, or on those binary machines without guard digits */
 | |
| /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
 | |
| /* > It could conceivably fail on hexadecimal or decimal machines */
 | |
| /* > without guard digits, but we know of none.  See SLASD3 for details. */
 | |
| /* > */
 | |
| /* > The code currently calls SLASDQ if singular values only are desired. */
 | |
| /* > However, it can be slightly modified to compute singular values */
 | |
| /* > using the divide and conquer method. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  B is upper bidiagonal. */
 | |
| /* >          = 'L':  B is lower bidiagonal. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPQ is CHARACTER*1 */
 | |
| /* >          Specifies whether singular vectors are to be computed */
 | |
| /* >          as follows: */
 | |
| /* >          = 'N':  Compute singular values only; */
 | |
| /* >          = 'P':  Compute singular values and compute singular */
 | |
| /* >                  vectors in compact form; */
 | |
| /* >          = 'I':  Compute singular values and singular vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix B.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >          On entry, the n diagonal elements of the bidiagonal matrix B. */
 | |
| /* >          On exit, if INFO=0, the singular values of B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (N-1) */
 | |
| /* >          On entry, the elements of E contain the offdiagonal */
 | |
| /* >          elements of the bidiagonal matrix whose SVD is desired. */
 | |
| /* >          On exit, E has been destroyed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension (LDU,N) */
 | |
| /* >          If  COMPQ = 'I', then: */
 | |
| /* >             On exit, if INFO = 0, U contains the left singular vectors */
 | |
| /* >             of the bidiagonal matrix. */
 | |
| /* >          For other values of COMPQ, U is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U.  LDU >= 1. */
 | |
| /* >          If singular vectors are desired, then LDU >= f2cmax( 1, N ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is REAL array, dimension (LDVT,N) */
 | |
| /* >          If  COMPQ = 'I', then: */
 | |
| /* >             On exit, if INFO = 0, VT**T contains the right singular */
 | |
| /* >             vectors of the bidiagonal matrix. */
 | |
| /* >          For other values of COMPQ, VT is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >          The leading dimension of the array VT.  LDVT >= 1. */
 | |
| /* >          If singular vectors are desired, then LDVT >= f2cmax( 1, N ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is REAL array, dimension (LDQ) */
 | |
| /* >          If  COMPQ = 'P', then: */
 | |
| /* >             On exit, if INFO = 0, Q and IQ contain the left */
 | |
| /* >             and right singular vectors in a compact form, */
 | |
| /* >             requiring O(N log N) space instead of 2*N**2. */
 | |
| /* >             In particular, Q contains all the REAL data in */
 | |
| /* >             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
 | |
| /* >             words of memory, where SMLSIZ is returned by ILAENV and */
 | |
| /* >             is equal to the maximum size of the subproblems at the */
 | |
| /* >             bottom of the computation tree (usually about 25). */
 | |
| /* >          For other values of COMPQ, Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IQ */
 | |
| /* > \verbatim */
 | |
| /* >          IQ is INTEGER array, dimension (LDIQ) */
 | |
| /* >          If  COMPQ = 'P', then: */
 | |
| /* >             On exit, if INFO = 0, Q and IQ contain the left */
 | |
| /* >             and right singular vectors in a compact form, */
 | |
| /* >             requiring O(N log N) space instead of 2*N**2. */
 | |
| /* >             In particular, IQ contains all INTEGER data in */
 | |
| /* >             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
 | |
| /* >             words of memory, where SMLSIZ is returned by ILAENV and */
 | |
| /* >             is equal to the maximum size of the subproblems at the */
 | |
| /* >             bottom of the computation tree (usually about 25). */
 | |
| /* >          For other values of COMPQ, IQ is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          If COMPQ = 'N' then LWORK >= (4 * N). */
 | |
| /* >          If COMPQ = 'P' then LWORK >= (6 * N). */
 | |
| /* >          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (8*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  The algorithm failed to compute a singular value. */
 | |
| /* >                The update process of divide and conquer failed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Huan Ren, Computer Science Division, University of */
 | |
| /* >     California at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sbdsdc_(char *uplo, char *compq, integer *n, real *d__, 
 | |
| 	real *e, real *u, integer *ldu, real *vt, integer *ldvt, real *q, 
 | |
| 	integer *iq, real *work, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer difl, difr, ierr, perm, mlvl, sqre, i__, j, k;
 | |
|     real p, r__;
 | |
|     integer z__;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer poles;
 | |
|     extern /* Subroutine */ void slasr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     integer iuplo, nsize, start;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *), sswap_(integer *, real *, integer *, real *, integer *
 | |
| 	    ), slasd0_(integer *, integer *, real *, real *, real *, integer *
 | |
| 	    , real *, integer *, integer *, integer *, real *, integer *);
 | |
|     integer ic, ii, kk;
 | |
|     real cs;
 | |
|     integer is, iu;
 | |
|     real sn;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ void slasda_(integer *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *, real *, integer *, 
 | |
| 	    real *, real *, real *, real *, integer *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, real *, real *, integer *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     integer givcol;
 | |
|     extern /* Subroutine */ void slasdq_(char *, integer *, integer *, integer 
 | |
| 	    *, integer *, integer *, real *, real *, real *, integer *, real *
 | |
| 	    , integer *, real *, integer *, real *, integer *);
 | |
|     integer icompq;
 | |
|     extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *, 
 | |
| 	    real *, real *, integer *), slartg_(real *, real *, real *
 | |
| 	    , real *, real *);
 | |
|     real orgnrm;
 | |
|     integer givnum;
 | |
|     extern real slanst_(char *, integer *, real *, real *);
 | |
|     integer givptr, nm1, qstart, smlsiz, wstart, smlszp;
 | |
|     real eps;
 | |
|     integer ivt;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /*  Changed dimension statement in comment describing E from (N) to */
 | |
| /*  (N-1).  Sven, 17 Feb 05. */
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --e;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     --q;
 | |
|     --iq;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     iuplo = 0;
 | |
|     if (lsame_(uplo, "U")) {
 | |
| 	iuplo = 1;
 | |
|     }
 | |
|     if (lsame_(uplo, "L")) {
 | |
| 	iuplo = 2;
 | |
|     }
 | |
|     if (lsame_(compq, "N")) {
 | |
| 	icompq = 0;
 | |
|     } else if (lsame_(compq, "P")) {
 | |
| 	icompq = 1;
 | |
|     } else if (lsame_(compq, "I")) {
 | |
| 	icompq = 2;
 | |
|     } else {
 | |
| 	icompq = -1;
 | |
|     }
 | |
|     if (iuplo == 0) {
 | |
| 	*info = -1;
 | |
|     } else if (icompq < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
 | |
| 	*info = -9;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SBDSDC", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
|     smlsiz = ilaenv_(&c__9, "SBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
 | |
| 	    ftnlen)6, (ftnlen)1);
 | |
|     if (*n == 1) {
 | |
| 	if (icompq == 1) {
 | |
| 	    q[1] = r_sign(&c_b15, &d__[1]);
 | |
| 	    q[smlsiz * *n + 1] = 1.f;
 | |
| 	} else if (icompq == 2) {
 | |
| 	    u[u_dim1 + 1] = r_sign(&c_b15, &d__[1]);
 | |
| 	    vt[vt_dim1 + 1] = 1.f;
 | |
| 	}
 | |
| 	d__[1] = abs(d__[1]);
 | |
| 	return;
 | |
|     }
 | |
|     nm1 = *n - 1;
 | |
| 
 | |
| /*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
 | |
| /*     by applying Givens rotations on the left */
 | |
| 
 | |
|     wstart = 1;
 | |
|     qstart = 3;
 | |
|     if (icompq == 1) {
 | |
| 	scopy_(n, &d__[1], &c__1, &q[1], &c__1);
 | |
| 	i__1 = *n - 1;
 | |
| 	scopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
 | |
|     }
 | |
|     if (iuplo == 2) {
 | |
| 	qstart = 5;
 | |
| 	if (icompq == 2) {
 | |
| 	    wstart = (*n << 1) - 1;
 | |
| 	}
 | |
| 	i__1 = *n - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 | |
| 	    d__[i__] = r__;
 | |
| 	    e[i__] = sn * d__[i__ + 1];
 | |
| 	    d__[i__ + 1] = cs * d__[i__ + 1];
 | |
| 	    if (icompq == 1) {
 | |
| 		q[i__ + (*n << 1)] = cs;
 | |
| 		q[i__ + *n * 3] = sn;
 | |
| 	    } else if (icompq == 2) {
 | |
| 		work[i__] = cs;
 | |
| 		work[nm1 + i__] = -sn;
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If ICOMPQ = 0, use SLASDQ to compute the singular values. */
 | |
| 
 | |
|     if (icompq == 0) {
 | |
| /*        Ignore WSTART, instead using WORK( 1 ), since the two vectors */
 | |
| /*        for CS and -SN above are added only if ICOMPQ == 2, */
 | |
| /*        and adding them exceeds documented WORK size of 4*n. */
 | |
| 	slasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
 | |
| 		vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
 | |
| 		1], info);
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     If N is smaller than the minimum divide size SMLSIZ, then solve */
 | |
| /*     the problem with another solver. */
 | |
| 
 | |
|     if (*n <= smlsiz) {
 | |
| 	if (icompq == 2) {
 | |
| 	    slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
 | |
| 	    slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
 | |
| 	    slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
 | |
| 		    , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
 | |
| 		    wstart], info);
 | |
| 	} else if (icompq == 1) {
 | |
| 	    iu = 1;
 | |
| 	    ivt = iu + *n;
 | |
| 	    slaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
 | |
| 	    slaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
 | |
| 	    slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
 | |
| 		    qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
 | |
| 		    iu + (qstart - 1) * *n], n, &work[wstart], info);
 | |
| 	}
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
|     if (icompq == 2) {
 | |
| 	slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
 | |
| 	slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
 | |
|     }
 | |
| 
 | |
| /*     Scale. */
 | |
| 
 | |
|     orgnrm = slanst_("M", n, &d__[1], &e[1]);
 | |
|     if (orgnrm == 0.f) {
 | |
| 	return;
 | |
|     }
 | |
|     slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
 | |
|     slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
 | |
| 	    ierr);
 | |
| 
 | |
|     eps = slamch_("Epsilon");
 | |
| 
 | |
|     mlvl = (integer) (log((real) (*n) / (real) (smlsiz + 1)) / log(2.f)) + 1;
 | |
|     smlszp = smlsiz + 1;
 | |
| 
 | |
|     if (icompq == 1) {
 | |
| 	iu = 1;
 | |
| 	ivt = smlsiz + 1;
 | |
| 	difl = ivt + smlszp;
 | |
| 	difr = difl + mlvl;
 | |
| 	z__ = difr + (mlvl << 1);
 | |
| 	ic = z__ + mlvl;
 | |
| 	is = ic + 1;
 | |
| 	poles = is + 1;
 | |
| 	givnum = poles + (mlvl << 1);
 | |
| 
 | |
| 	k = 1;
 | |
| 	givptr = 2;
 | |
| 	perm = 3;
 | |
| 	givcol = perm + mlvl;
 | |
|     }
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if ((r__1 = d__[i__], abs(r__1)) < eps) {
 | |
| 	    d__[i__] = r_sign(&eps, &d__[i__]);
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     start = 1;
 | |
|     sqre = 0;
 | |
| 
 | |
|     i__1 = nm1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
 | |
| 
 | |
| /*        Subproblem found. First determine its size and then */
 | |
| /*        apply divide and conquer on it. */
 | |
| 
 | |
| 	    if (i__ < nm1) {
 | |
| 
 | |
| /*        A subproblem with E(I) small for I < NM1. */
 | |
| 
 | |
| 		nsize = i__ - start + 1;
 | |
| 	    } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
 | |
| 
 | |
| /*        A subproblem with E(NM1) not too small but I = NM1. */
 | |
| 
 | |
| 		nsize = *n - start + 1;
 | |
| 	    } else {
 | |
| 
 | |
| /*        A subproblem with E(NM1) small. This implies an */
 | |
| /*        1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
 | |
| /*        first. */
 | |
| 
 | |
| 		nsize = i__ - start + 1;
 | |
| 		if (icompq == 2) {
 | |
| 		    u[*n + *n * u_dim1] = r_sign(&c_b15, &d__[*n]);
 | |
| 		    vt[*n + *n * vt_dim1] = 1.f;
 | |
| 		} else if (icompq == 1) {
 | |
| 		    q[*n + (qstart - 1) * *n] = r_sign(&c_b15, &d__[*n]);
 | |
| 		    q[*n + (smlsiz + qstart - 1) * *n] = 1.f;
 | |
| 		}
 | |
| 		d__[*n] = (r__1 = d__[*n], abs(r__1));
 | |
| 	    }
 | |
| 	    if (icompq == 2) {
 | |
| 		slasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start + 
 | |
| 			start * u_dim1], ldu, &vt[start + start * vt_dim1], 
 | |
| 			ldvt, &smlsiz, &iwork[1], &work[wstart], info);
 | |
| 	    } else {
 | |
| 		slasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
 | |
| 			start], &q[start + (iu + qstart - 2) * *n], n, &q[
 | |
| 			start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
 | |
| 			 &q[start + (difl + qstart - 2) * *n], &q[start + (
 | |
| 			difr + qstart - 2) * *n], &q[start + (z__ + qstart - 
 | |
| 			2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
 | |
| 			start + givptr * *n], &iq[start + givcol * *n], n, &
 | |
| 			iq[start + perm * *n], &q[start + (givnum + qstart - 
 | |
| 			2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
 | |
| 			start + (is + qstart - 2) * *n], &work[wstart], &
 | |
| 			iwork[1], info);
 | |
| 	    }
 | |
| 	    if (*info != 0) {
 | |
| 		return;
 | |
| 	    }
 | |
| 	    start = i__ + 1;
 | |
| 	}
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     Unscale */
 | |
| 
 | |
|     slascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
 | |
| L40:
 | |
| 
 | |
| /*     Use Selection Sort to minimize swaps of singular vectors */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (ii = 2; ii <= i__1; ++ii) {
 | |
| 	i__ = ii - 1;
 | |
| 	kk = i__;
 | |
| 	p = d__[i__];
 | |
| 	i__2 = *n;
 | |
| 	for (j = ii; j <= i__2; ++j) {
 | |
| 	    if (d__[j] > p) {
 | |
| 		kk = j;
 | |
| 		p = d__[j];
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
| 	if (kk != i__) {
 | |
| 	    d__[kk] = d__[i__];
 | |
| 	    d__[i__] = p;
 | |
| 	    if (icompq == 1) {
 | |
| 		iq[i__] = kk;
 | |
| 	    } else if (icompq == 2) {
 | |
| 		sswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
 | |
| 			c__1);
 | |
| 		sswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	} else if (icompq == 1) {
 | |
| 	    iq[i__] = i__;
 | |
| 	}
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
| /*     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
 | |
| 
 | |
|     if (icompq == 1) {
 | |
| 	if (iuplo == 1) {
 | |
| 	    iq[*n] = 1;
 | |
| 	} else {
 | |
| 	    iq[*n] = 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If B is lower bidiagonal, update U by those Givens rotations */
 | |
| /*     which rotated B to be upper bidiagonal */
 | |
| 
 | |
|     if (iuplo == 2 && icompq == 2) {
 | |
| 	slasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SBDSDC */
 | |
| 
 | |
| } /* sbdsdc_ */
 | |
| 
 |