293 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGET52
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
 | |
| *                          WORK, RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            LEFT
 | |
| *       INTEGER            LDA, LDB, LDE, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RESULT( 2 ), RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
| *      $                   BETA( * ), E( LDE, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGET52  does an eigenvector check for the generalized eigenvalue
 | |
| *> problem.
 | |
| *>
 | |
| *> The basic test for right eigenvectors is:
 | |
| *>
 | |
| *>                           | b(i) A E(i) -  a(i) B E(i) |
 | |
| *>         RESULT(1) = max   -------------------------------
 | |
| *>                      i    n ulp max( |b(i) A|, |a(i) B| )
 | |
| *>
 | |
| *> using the 1-norm.  Here, a(i)/b(i) = w is the i-th generalized
 | |
| *> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
 | |
| *> generalized eigenvalue of m A - B.
 | |
| *>
 | |
| *>                         H   H  _      _
 | |
| *> For left eigenvectors, A , B , a, and b  are used.
 | |
| *>
 | |
| *> ZGET52 also tests the normalization of E.  Each eigenvector is
 | |
| *> supposed to be normalized so that the maximum "absolute value"
 | |
| *> of its elements is 1, where in this case, "absolute value"
 | |
| *> of a complex value x is  |Re(x)| + |Im(x)| ; let us call this
 | |
| *> maximum "absolute value" norm of a vector v  M(v).  
 | |
| *> If a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
 | |
| *> vector. The normalization test is:
 | |
| *>
 | |
| *>         RESULT(2) =      max       | M(v(i)) - 1 | / ( n ulp )
 | |
| *>                    eigenvectors v(i)
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] LEFT
 | |
| *> \verbatim
 | |
| *>          LEFT is LOGICAL
 | |
| *>          =.TRUE.:  The eigenvectors in the columns of E are assumed
 | |
| *>                    to be *left* eigenvectors.
 | |
| *>          =.FALSE.: The eigenvectors in the columns of E are assumed
 | |
| *>                    to be *right* eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrices.  If it is zero, ZGET52 does
 | |
| *>          nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, N)
 | |
| *>          The matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB, N)
 | |
| *>          The matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX*16 array, dimension (LDE, N)
 | |
| *>          The matrix of eigenvectors.  It must be O( 1 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDE
 | |
| *> \verbatim
 | |
| *>          LDE is INTEGER
 | |
| *>          The leading dimension of E.  It must be at least 1 and at
 | |
| *>          least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16 array, dimension (N)
 | |
| *>          The values a(i) as described above, which, along with b(i),
 | |
| *>          define the generalized eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX*16 array, dimension (N)
 | |
| *>          The values b(i) as described above, which, along with a(i),
 | |
| *>          define the generalized eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (N**2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The values computed by the test described above.  If A E or
 | |
| *>          B E is likely to overflow, then RESULT(1:2) is set to
 | |
| *>          10 / ulp.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
 | |
|      $                   WORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            LEFT
 | |
|       INTEGER            LDA, LDB, LDE, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RESULT( 2 ), RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
|      $                   BETA( * ), E( LDE, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          NORMAB, TRANS
 | |
|       INTEGER            J, JVEC
 | |
|       DOUBLE PRECISION   ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
 | |
|      $                   ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
 | |
|      $                   ULP
 | |
|       COMPLEX*16         ACOEFF, ALPHAI, BCOEFF, BETAI, X
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE
 | |
|       EXTERNAL           DLAMCH, ZLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   ABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          TRANS = 'C'
 | |
|          NORMAB = 'I'
 | |
|       ELSE
 | |
|          TRANS = 'N'
 | |
|          NORMAB = 'O'
 | |
|       END IF
 | |
| *
 | |
| *     Norm of A, B, and E:
 | |
| *
 | |
|       ANORM = MAX( ZLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
 | |
|       BNORM = MAX( ZLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
 | |
|       ENORM = MAX( ZLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
 | |
|       ALFMAX = SAFMAX / MAX( ONE, BNORM )
 | |
|       BETMAX = SAFMAX / MAX( ONE, ANORM )
 | |
| *
 | |
| *     Compute error matrix.
 | |
| *     Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| )
 | |
| *
 | |
|       DO 10 JVEC = 1, N
 | |
|          ALPHAI = ALPHA( JVEC )
 | |
|          BETAI = BETA( JVEC )
 | |
|          ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
 | |
|          IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
 | |
|      $       ABMAX.LT.ONE ) THEN
 | |
|             SCALE = ONE / MAX( ABMAX, SAFMIN )
 | |
|             ALPHAI = SCALE*ALPHAI
 | |
|             BETAI = SCALE*BETAI
 | |
|          END IF
 | |
|          SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
 | |
|      $           SAFMIN )
 | |
|          ACOEFF = SCALE*BETAI
 | |
|          BCOEFF = SCALE*ALPHAI
 | |
|          IF( LEFT ) THEN
 | |
|             ACOEFF = DCONJG( ACOEFF )
 | |
|             BCOEFF = DCONJG( BCOEFF )
 | |
|          END IF
 | |
|          CALL ZGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
 | |
|      $               CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
|          CALL ZGEMV( TRANS, N, N, -BCOEFF, B, LDA, E( 1, JVEC ), 1,
 | |
|      $               CONE, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
|    10 CONTINUE
 | |
| *
 | |
|       ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
 | |
| *
 | |
| *     Compute RESULT(1)
 | |
| *
 | |
|       RESULT( 1 ) = ERRNRM / ULP
 | |
| *
 | |
| *     Normalization of E:
 | |
| *
 | |
|       ENRMER = ZERO
 | |
|       DO 30 JVEC = 1, N
 | |
|          TEMP1 = ZERO
 | |
|          DO 20 J = 1, N
 | |
|             TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
 | |
|    20    CONTINUE
 | |
|          ENRMER = MAX( ENRMER, TEMP1-ONE )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Compute RESULT(2) : the normalization error in E.
 | |
| *
 | |
|       RESULT( 2 ) = ENRMER / ( DBLE( N )*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGET52
 | |
| *
 | |
|       END
 |