337 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal similarity transformation.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLATRD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatrd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatrd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatrd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDA, LDW, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLATRD reduces NB rows and columns of a real symmetric matrix A to
 | |
| *> symmetric tridiagonal form by an orthogonal similarity
 | |
| *> transformation Q**T * A * Q, and returns the matrices V and W which are
 | |
| *> needed to apply the transformation to the unreduced part of A.
 | |
| *>
 | |
| *> If UPLO = 'U', SLATRD reduces the last NB rows and columns of a
 | |
| *> matrix, of which the upper triangle is supplied;
 | |
| *> if UPLO = 'L', SLATRD reduces the first NB rows and columns of a
 | |
| *> matrix, of which the lower triangle is supplied.
 | |
| *>
 | |
| *> This is an auxiliary routine called by SSYTRD.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U': Upper triangular
 | |
| *>          = 'L': Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The number of rows and columns to be reduced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          n-by-n upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading n-by-n lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>          On exit:
 | |
| *>          if UPLO = 'U', the last NB columns have been reduced to
 | |
| *>            tridiagonal form, with the diagonal elements overwriting
 | |
| *>            the diagonal elements of A; the elements above the diagonal
 | |
| *>            with the array TAU, represent the orthogonal matrix Q as a
 | |
| *>            product of elementary reflectors;
 | |
| *>          if UPLO = 'L', the first NB columns have been reduced to
 | |
| *>            tridiagonal form, with the diagonal elements overwriting
 | |
| *>            the diagonal elements of A; the elements below the diagonal
 | |
| *>            with the array TAU, represent the  orthogonal matrix Q as a
 | |
| *>            product of elementary reflectors.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= (1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
 | |
| *>          elements of the last NB columns of the reduced matrix;
 | |
| *>          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
 | |
| *>          the first NB columns of the reduced matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (N-1)
 | |
| *>          The scalar factors of the elementary reflectors, stored in
 | |
| *>          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (LDW,NB)
 | |
| *>          The n-by-nb matrix W required to update the unreduced part
 | |
| *>          of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDW
 | |
| *> \verbatim
 | |
| *>          LDW is INTEGER
 | |
| *>          The leading dimension of the array W. LDW >= max(1,N).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(n) H(n-1) . . . H(n-nb+1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
 | |
| *>  and tau in TAU(i-1).
 | |
| *>
 | |
| *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(nb).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
 | |
| *>  and tau in TAU(i).
 | |
| *>
 | |
| *>  The elements of the vectors v together form the n-by-nb matrix V
 | |
| *>  which is needed, with W, to apply the transformation to the unreduced
 | |
| *>  part of the matrix, using a symmetric rank-2k update of the form:
 | |
| *>  A := A - V*W**T - W*V**T.
 | |
| *>
 | |
| *>  The contents of A on exit are illustrated by the following examples
 | |
| *>  with n = 5 and nb = 2:
 | |
| *>
 | |
| *>  if UPLO = 'U':                       if UPLO = 'L':
 | |
| *>
 | |
| *>    (  a   a   a   v4  v5 )              (  d                  )
 | |
| *>    (      a   a   v4  v5 )              (  1   d              )
 | |
| *>    (          a   1   v5 )              (  v1  1   a          )
 | |
| *>    (              d   1  )              (  v1  v2  a   a      )
 | |
| *>    (                  d  )              (  v1  v2  a   a   a  )
 | |
| *>
 | |
| *>  where d denotes a diagonal element of the reduced matrix, a denotes
 | |
| *>  an element of the original matrix that is unchanged, and vi denotes
 | |
| *>  an element of the vector defining H(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDA, LDW, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, HALF
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, HALF = 0.5E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IW
 | |
|       REAL               ALPHA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SGEMV, SLARFG, SSCAL, SSYMV
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SDOT
 | |
|       EXTERNAL           LSAME, SDOT
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        Reduce last NB columns of upper triangle
 | |
| *
 | |
|          DO 10 I = N, N - NB + 1, -1
 | |
|             IW = I - N + NB
 | |
|             IF( I.LT.N ) THEN
 | |
| *
 | |
| *              Update A(1:i,i)
 | |
| *
 | |
|                CALL SGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
 | |
|      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
 | |
|                CALL SGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
 | |
|      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
 | |
|             END IF
 | |
|             IF( I.GT.1 ) THEN
 | |
| *
 | |
| *              Generate elementary reflector H(i) to annihilate
 | |
| *              A(1:i-2,i)
 | |
| *
 | |
|                CALL SLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
 | |
|                E( I-1 ) = A( I-1, I )
 | |
|                A( I-1, I ) = ONE
 | |
| *
 | |
| *              Compute W(1:i-1,i)
 | |
| *
 | |
|                CALL SSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
 | |
|      $                     ZERO, W( 1, IW ), 1 )
 | |
|                IF( I.LT.N ) THEN
 | |
|                   CALL SGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
 | |
|      $                        LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
 | |
|                   CALL SGEMV( 'No transpose', I-1, N-I, -ONE,
 | |
|      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
 | |
|      $                        W( 1, IW ), 1 )
 | |
|                   CALL SGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
 | |
|      $                        LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
 | |
|                   CALL SGEMV( 'No transpose', I-1, N-I, -ONE,
 | |
|      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
 | |
|      $                        W( 1, IW ), 1 )
 | |
|                END IF
 | |
|                CALL SSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
 | |
|                ALPHA = -HALF*TAU( I-1 )*SDOT( I-1, W( 1, IW ), 1,
 | |
|      $                 A( 1, I ), 1 )
 | |
|                CALL SAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
 | |
|             END IF
 | |
| *
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Reduce first NB columns of lower triangle
 | |
| *
 | |
|          DO 20 I = 1, NB
 | |
| *
 | |
| *           Update A(i:n,i)
 | |
| *
 | |
|             CALL SGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
 | |
|      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
 | |
|             CALL SGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
 | |
|      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
 | |
|             IF( I.LT.N ) THEN
 | |
| *
 | |
| *              Generate elementary reflector H(i) to annihilate
 | |
| *              A(i+2:n,i)
 | |
| *
 | |
|                CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
 | |
|      $                      TAU( I ) )
 | |
|                E( I ) = A( I+1, I )
 | |
|                A( I+1, I ) = ONE
 | |
| *
 | |
| *              Compute W(i+1:n,i)
 | |
| *
 | |
|                CALL SSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
 | |
|      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
 | |
|                CALL SGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
 | |
|      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
 | |
|                CALL SGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
 | |
|      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
 | |
|                CALL SGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
 | |
|      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
 | |
|                CALL SGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
 | |
|      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
 | |
|                CALL SSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
 | |
|                ALPHA = -HALF*TAU( I )*SDOT( N-I, W( I+1, I ), 1,
 | |
|      $                 A( I+1, I ), 1 )
 | |
|                CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
 | |
|             END IF
 | |
| *
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLATRD
 | |
| *
 | |
|       END
 |