770 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			770 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGEGV + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegv.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegv.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegv.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 | |
| *                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVL, JOBVR
 | |
| *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
 | |
| *      $                   VR( LDVR, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This routine is deprecated and has been replaced by routine SGGEV.
 | |
| *>
 | |
| *> SGEGV computes the eigenvalues and, optionally, the left and/or right
 | |
| *> eigenvectors of a real matrix pair (A,B).
 | |
| *> Given two square matrices A and B,
 | |
| *> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
 | |
| *> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
 | |
| *> that
 | |
| *>
 | |
| *>    A*x = lambda*B*x.
 | |
| *>
 | |
| *> An alternate form is to find the eigenvalues mu and corresponding
 | |
| *> eigenvectors y such that
 | |
| *>
 | |
| *>    mu*A*y = B*y.
 | |
| *>
 | |
| *> These two forms are equivalent with mu = 1/lambda and x = y if
 | |
| *> neither lambda nor mu is zero.  In order to deal with the case that
 | |
| *> lambda or mu is zero or small, two values alpha and beta are returned
 | |
| *> for each eigenvalue, such that lambda = alpha/beta and
 | |
| *> mu = beta/alpha.
 | |
| *>
 | |
| *> The vectors x and y in the above equations are right eigenvectors of
 | |
| *> the matrix pair (A,B).  Vectors u and v satisfying
 | |
| *>
 | |
| *>    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
 | |
| *>
 | |
| *> are left eigenvectors of (A,B).
 | |
| *>
 | |
| *> Note: this routine performs "full balancing" on A and B
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVL
 | |
| *> \verbatim
 | |
| *>          JOBVL is CHARACTER*1
 | |
| *>          = 'N':  do not compute the left generalized eigenvectors;
 | |
| *>          = 'V':  compute the left generalized eigenvectors (returned
 | |
| *>                  in VL).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVR
 | |
| *> \verbatim
 | |
| *>          JOBVR is CHARACTER*1
 | |
| *>          = 'N':  do not compute the right generalized eigenvectors;
 | |
| *>          = 'V':  compute the right generalized eigenvectors (returned
 | |
| *>                  in VR).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, VL, and VR.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          On entry, the matrix A.
 | |
| *>          If JOBVL = 'V' or JOBVR = 'V', then on exit A
 | |
| *>          contains the real Schur form of A from the generalized Schur
 | |
| *>          factorization of the pair (A,B) after balancing.
 | |
| *>          If no eigenvectors were computed, then only the diagonal
 | |
| *>          blocks from the Schur form will be correct.  See SGGHRD and
 | |
| *>          SHGEQZ for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB, N)
 | |
| *>          On entry, the matrix B.
 | |
| *>          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
 | |
| *>          upper triangular matrix obtained from B in the generalized
 | |
| *>          Schur factorization of the pair (A,B) after balancing.
 | |
| *>          If no eigenvectors were computed, then only those elements of
 | |
| *>          B corresponding to the diagonal blocks from the Schur form of
 | |
| *>          A will be correct.  See SGGHRD and SHGEQZ for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is REAL array, dimension (N)
 | |
| *>          The real parts of each scalar alpha defining an eigenvalue of
 | |
| *>          GNEP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is REAL array, dimension (N)
 | |
| *>          The imaginary parts of each scalar alpha defining an
 | |
| *>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
 | |
| *>          eigenvalue is real; if positive, then the j-th and
 | |
| *>          (j+1)-st eigenvalues are a complex conjugate pair, with
 | |
| *>          ALPHAI(j+1) = -ALPHAI(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL array, dimension (N)
 | |
| *>          The scalars beta that define the eigenvalues of GNEP.
 | |
| *>          
 | |
| *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 | |
| *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
 | |
| *>          pair (A,B), in one of the forms lambda = alpha/beta or
 | |
| *>          mu = beta/alpha.  Since either lambda or mu may overflow,
 | |
| *>          they should not, in general, be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL array, dimension (LDVL,N)
 | |
| *>          If JOBVL = 'V', the left eigenvectors u(j) are stored
 | |
| *>          in the columns of VL, in the same order as their eigenvalues.
 | |
| *>          If the j-th eigenvalue is real, then u(j) = VL(:,j).
 | |
| *>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
 | |
| *>          pair, then
 | |
| *>             u(j) = VL(:,j) + i*VL(:,j+1)
 | |
| *>          and
 | |
| *>            u(j+1) = VL(:,j) - i*VL(:,j+1).
 | |
| *>
 | |
| *>          Each eigenvector is scaled so that its largest component has
 | |
| *>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
 | |
| *>          corresponding to an eigenvalue with alpha = beta = 0, which
 | |
| *>          are set to zero.
 | |
| *>          Not referenced if JOBVL = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the matrix VL. LDVL >= 1, and
 | |
| *>          if JOBVL = 'V', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is REAL array, dimension (LDVR,N)
 | |
| *>          If JOBVR = 'V', the right eigenvectors x(j) are stored
 | |
| *>          in the columns of VR, in the same order as their eigenvalues.
 | |
| *>          If the j-th eigenvalue is real, then x(j) = VR(:,j).
 | |
| *>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
 | |
| *>          pair, then
 | |
| *>            x(j) = VR(:,j) + i*VR(:,j+1)
 | |
| *>          and
 | |
| *>            x(j+1) = VR(:,j) - i*VR(:,j+1).
 | |
| *>
 | |
| *>          Each eigenvector is scaled so that its largest component has
 | |
| *>          abs(real part) + abs(imag. part) = 1, except for eigenvalues
 | |
| *>          corresponding to an eigenvalue with alpha = beta = 0, which
 | |
| *>          are set to zero.
 | |
| *>          Not referenced if JOBVR = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the matrix VR. LDVR >= 1, and
 | |
| *>          if JOBVR = 'V', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,8*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>          To compute the optimal value of LWORK, call ILAENV to get
 | |
| *>          blocksizes (for SGEQRF, SORMQR, and SORGQR.)  Then compute:
 | |
| *>          NB  -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
 | |
| *>          The optimal LWORK is:
 | |
| *>              2*N + MAX( 6*N, N*(NB+1) ).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1,...,N:
 | |
| *>                The QZ iteration failed.  No eigenvectors have been
 | |
| *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
 | |
| *>                should be correct for j=INFO+1,...,N.
 | |
| *>          > N:  errors that usually indicate LAPACK problems:
 | |
| *>                =N+1: error return from SGGBAL
 | |
| *>                =N+2: error return from SGEQRF
 | |
| *>                =N+3: error return from SORMQR
 | |
| *>                =N+4: error return from SORGQR
 | |
| *>                =N+5: error return from SGGHRD
 | |
| *>                =N+6: error return from SHGEQZ (other than failed
 | |
| *>                                                iteration)
 | |
| *>                =N+7: error return from STGEVC
 | |
| *>                =N+8: error return from SGGBAK (computing VL)
 | |
| *>                =N+9: error return from SGGBAK (computing VR)
 | |
| *>                =N+10: error return from SLASCL (various calls)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realGEeigen
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Balancing
 | |
| *>  ---------
 | |
| *>
 | |
| *>  This driver calls SGGBAL to both permute and scale rows and columns
 | |
| *>  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
 | |
| *>  and PL*B*R will be upper triangular except for the diagonal blocks
 | |
| *>  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
 | |
| *>  possible.  The diagonal scaling matrices DL and DR are chosen so
 | |
| *>  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
 | |
| *>  one (except for the elements that start out zero.)
 | |
| *>
 | |
| *>  After the eigenvalues and eigenvectors of the balanced matrices
 | |
| *>  have been computed, SGGBAK transforms the eigenvectors back to what
 | |
| *>  they would have been (in perfect arithmetic) if they had not been
 | |
| *>  balanced.
 | |
| *>
 | |
| *>  Contents of A and B on Exit
 | |
| *>  -------- -- - --- - -- ----
 | |
| *>
 | |
| *>  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
 | |
| *>  both), then on exit the arrays A and B will contain the real Schur
 | |
| *>  form[*] of the "balanced" versions of A and B.  If no eigenvectors
 | |
| *>  are computed, then only the diagonal blocks will be correct.
 | |
| *>
 | |
| *>  [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations",
 | |
| *>      by Golub & van Loan, pub. by Johns Hopkins U. Press.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 | |
|      $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVL, JOBVR
 | |
|       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
 | |
|      $                   VR( LDVR, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
 | |
|       CHARACTER          CHTEMP
 | |
|       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
 | |
|      $                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
 | |
|      $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
 | |
|       REAL               ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
 | |
|      $                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
 | |
|      $                   SALFAI, SALFAR, SBETA, SCALE, TEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            LDUMMA( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLACPY,
 | |
|      $                   SLASCL, SLASET, SORGQR, SORMQR, STGEVC, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           ILAENV, LSAME, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, INT, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode the input arguments
 | |
| *
 | |
|       IF( LSAME( JOBVL, 'N' ) ) THEN
 | |
|          IJOBVL = 1
 | |
|          ILVL = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
 | |
|          IJOBVL = 2
 | |
|          ILVL = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVL = -1
 | |
|          ILVL = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOBVR, 'N' ) ) THEN
 | |
|          IJOBVR = 1
 | |
|          ILVR = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
 | |
|          IJOBVR = 2
 | |
|          ILVR = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVR = -1
 | |
|          ILVR = .FALSE.
 | |
|       END IF
 | |
|       ILV = ILVL .OR. ILVR
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       LWKMIN = MAX( 8*N, 1 )
 | |
|       LWKOPT = LWKMIN
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       INFO = 0
 | |
|       IF( IJOBVL.LE.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IJOBVR.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          NB1 = ILAENV( 1, 'SGEQRF', ' ', N, N, -1, -1 )
 | |
|          NB2 = ILAENV( 1, 'SORMQR', ' ', N, N, N, -1 )
 | |
|          NB3 = ILAENV( 1, 'SORGQR', ' ', N, N, N, -1 )
 | |
|          NB = MAX( NB1, NB2, NB3 )
 | |
|          LOPT = 2*N + MAX( 6*N, N*(NB+1) )
 | |
|          WORK( 1 ) = LOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGEGV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
 | |
|       SAFMIN = SLAMCH( 'S' )
 | |
|       SAFMIN = SAFMIN + SAFMIN
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       ONEPLS = ONE + ( 4*EPS )
 | |
| *
 | |
| *     Scale A
 | |
| *
 | |
|       ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
 | |
|       ANRM1 = ANRM
 | |
|       ANRM2 = ONE
 | |
|       IF( ANRM.LT.ONE ) THEN
 | |
|          IF( SAFMAX*ANRM.LT.ONE ) THEN
 | |
|             ANRM1 = SAFMIN
 | |
|             ANRM2 = SAFMAX*ANRM
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ANRM.GT.ZERO ) THEN
 | |
|          CALL SLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 10
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Scale B
 | |
| *
 | |
|       BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
 | |
|       BNRM1 = BNRM
 | |
|       BNRM2 = ONE
 | |
|       IF( BNRM.LT.ONE ) THEN
 | |
|          IF( SAFMAX*BNRM.LT.ONE ) THEN
 | |
|             BNRM1 = SAFMIN
 | |
|             BNRM2 = SAFMAX*BNRM
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( BNRM.GT.ZERO ) THEN
 | |
|          CALL SLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 10
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Permute the matrix to make it more nearly triangular
 | |
| *     Workspace layout:  (8*N words -- "work" requires 6*N words)
 | |
| *        left_permutation, right_permutation, work...
 | |
| *
 | |
|       ILEFT = 1
 | |
|       IRIGHT = N + 1
 | |
|       IWORK = IRIGHT + N
 | |
|       CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
 | |
|      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 1
 | |
|          GO TO 120
 | |
|       END IF
 | |
| *
 | |
| *     Reduce B to triangular form, and initialize VL and/or VR
 | |
| *     Workspace layout:  ("work..." must have at least N words)
 | |
| *        left_permutation, right_permutation, tau, work...
 | |
| *
 | |
|       IROWS = IHI + 1 - ILO
 | |
|       IF( ILV ) THEN
 | |
|          ICOLS = N + 1 - ILO
 | |
|       ELSE
 | |
|          ICOLS = IROWS
 | |
|       END IF
 | |
|       ITAU = IWORK
 | |
|       IWORK = ITAU + IROWS
 | |
|       CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | |
|      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | |
|       IF( IINFO.GE.0 )
 | |
|      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 2
 | |
|          GO TO 120
 | |
|       END IF
 | |
| *
 | |
|       CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | |
|      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
 | |
|      $             LWORK+1-IWORK, IINFO )
 | |
|       IF( IINFO.GE.0 )
 | |
|      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 3
 | |
|          GO TO 120
 | |
|       END IF
 | |
| *
 | |
|       IF( ILVL ) THEN
 | |
|          CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
 | |
|          CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | |
|      $                VL( ILO+1, ILO ), LDVL )
 | |
|          CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
 | |
|      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
 | |
|      $                IINFO )
 | |
|          IF( IINFO.GE.0 )
 | |
|      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 4
 | |
|             GO TO 120
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ILVR )
 | |
|      $   CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
 | |
| *
 | |
| *     Reduce to generalized Hessenberg form
 | |
| *
 | |
|       IF( ILV ) THEN
 | |
| *
 | |
| *        Eigenvectors requested -- work on whole matrix.
 | |
| *
 | |
|          CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
 | |
|      $                LDVL, VR, LDVR, IINFO )
 | |
|       ELSE
 | |
|          CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
 | |
|      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
 | |
|       END IF
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 5
 | |
|          GO TO 120
 | |
|       END IF
 | |
| *
 | |
| *     Perform QZ algorithm
 | |
| *     Workspace layout:  ("work..." must have at least 1 word)
 | |
| *        left_permutation, right_permutation, work...
 | |
| *
 | |
|       IWORK = ITAU
 | |
|       IF( ILV ) THEN
 | |
|          CHTEMP = 'S'
 | |
|       ELSE
 | |
|          CHTEMP = 'E'
 | |
|       END IF
 | |
|       CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
 | |
|      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | |
|       IF( IINFO.GE.0 )
 | |
|      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
 | |
|             INFO = IINFO
 | |
|          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
 | |
|             INFO = IINFO - N
 | |
|          ELSE
 | |
|             INFO = N + 6
 | |
|          END IF
 | |
|          GO TO 120
 | |
|       END IF
 | |
| *
 | |
|       IF( ILV ) THEN
 | |
| *
 | |
| *        Compute Eigenvectors  (STGEVC requires 6*N words of workspace)
 | |
| *
 | |
|          IF( ILVL ) THEN
 | |
|             IF( ILVR ) THEN
 | |
|                CHTEMP = 'B'
 | |
|             ELSE
 | |
|                CHTEMP = 'L'
 | |
|             END IF
 | |
|          ELSE
 | |
|             CHTEMP = 'R'
 | |
|          END IF
 | |
| *
 | |
|          CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
 | |
|      $                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 7
 | |
|             GO TO 120
 | |
|          END IF
 | |
| *
 | |
| *        Undo balancing on VL and VR, rescale
 | |
| *
 | |
|          IF( ILVL ) THEN
 | |
|             CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
 | |
|      $                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                INFO = N + 8
 | |
|                GO TO 120
 | |
|             END IF
 | |
|             DO 50 JC = 1, N
 | |
|                IF( ALPHAI( JC ).LT.ZERO )
 | |
|      $            GO TO 50
 | |
|                TEMP = ZERO
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 10 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
 | |
|    10             CONTINUE
 | |
|                ELSE
 | |
|                   DO 20 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
 | |
|      $                      ABS( VL( JR, JC+1 ) ) )
 | |
|    20             CONTINUE
 | |
|                END IF
 | |
|                IF( TEMP.LT.SAFMIN )
 | |
|      $            GO TO 50
 | |
|                TEMP = ONE / TEMP
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 30 JR = 1, N
 | |
|                      VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|    30             CONTINUE
 | |
|                ELSE
 | |
|                   DO 40 JR = 1, N
 | |
|                      VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
 | |
|    40             CONTINUE
 | |
|                END IF
 | |
|    50       CONTINUE
 | |
|          END IF
 | |
|          IF( ILVR ) THEN
 | |
|             CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
 | |
|      $                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                INFO = N + 9
 | |
|                GO TO 120
 | |
|             END IF
 | |
|             DO 100 JC = 1, N
 | |
|                IF( ALPHAI( JC ).LT.ZERO )
 | |
|      $            GO TO 100
 | |
|                TEMP = ZERO
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 60 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
 | |
|    60             CONTINUE
 | |
|                ELSE
 | |
|                   DO 70 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
 | |
|      $                      ABS( VR( JR, JC+1 ) ) )
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
|                IF( TEMP.LT.SAFMIN )
 | |
|      $            GO TO 100
 | |
|                TEMP = ONE / TEMP
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 80 JR = 1, N
 | |
|                      VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|    80             CONTINUE
 | |
|                ELSE
 | |
|                   DO 90 JR = 1, N
 | |
|                      VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
 | |
|    90             CONTINUE
 | |
|                END IF
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        End of eigenvector calculation
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling in alpha, beta
 | |
| *
 | |
| *     Note: this does not give the alpha and beta for the unscaled
 | |
| *     problem.
 | |
| *
 | |
| *     Un-scaling is limited to avoid underflow in alpha and beta
 | |
| *     if they are significant.
 | |
| *
 | |
|       DO 110 JC = 1, N
 | |
|          ABSAR = ABS( ALPHAR( JC ) )
 | |
|          ABSAI = ABS( ALPHAI( JC ) )
 | |
|          ABSB = ABS( BETA( JC ) )
 | |
|          SALFAR = ANRM*ALPHAR( JC )
 | |
|          SALFAI = ANRM*ALPHAI( JC )
 | |
|          SBETA = BNRM*BETA( JC )
 | |
|          ILIMIT = .FALSE.
 | |
|          SCALE = ONE
 | |
| *
 | |
| *        Check for significant underflow in ALPHAI
 | |
| *
 | |
|          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
 | |
|      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
 | |
|             ILIMIT = .TRUE.
 | |
|             SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
 | |
|      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
 | |
| *
 | |
|          ELSE IF( SALFAI.EQ.ZERO ) THEN
 | |
| *
 | |
| *           If insignificant underflow in ALPHAI, then make the
 | |
| *           conjugate eigenvalue real.
 | |
| *
 | |
|             IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
 | |
|                ALPHAI( JC-1 ) = ZERO
 | |
|             ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
 | |
|                ALPHAI( JC+1 ) = ZERO
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Check for significant underflow in ALPHAR
 | |
| *
 | |
|          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
 | |
|      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
 | |
|             ILIMIT = .TRUE.
 | |
|             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
 | |
|      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
 | |
|          END IF
 | |
| *
 | |
| *        Check for significant underflow in BETA
 | |
| *
 | |
|          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
 | |
|      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
 | |
|             ILIMIT = .TRUE.
 | |
|             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
 | |
|      $              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
 | |
|          END IF
 | |
| *
 | |
| *        Check for possible overflow when limiting scaling
 | |
| *
 | |
|          IF( ILIMIT ) THEN
 | |
|             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
 | |
|      $             ABS( SBETA ) )
 | |
|             IF( TEMP.GT.ONE )
 | |
|      $         SCALE = SCALE / TEMP
 | |
|             IF( SCALE.LT.ONE )
 | |
|      $         ILIMIT = .FALSE.
 | |
|          END IF
 | |
| *
 | |
| *        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
 | |
| *
 | |
|          IF( ILIMIT ) THEN
 | |
|             SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
 | |
|             SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
 | |
|             SBETA = ( SCALE*BETA( JC ) )*BNRM
 | |
|          END IF
 | |
|          ALPHAR( JC ) = SALFAR
 | |
|          ALPHAI( JC ) = SALFAI
 | |
|          BETA( JC ) = SBETA
 | |
|   110 CONTINUE
 | |
| *
 | |
|   120 CONTINUE
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGEGV
 | |
| *
 | |
|       END
 |