270 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGELQF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGELQF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelqf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelqf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelqf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGELQF computes an LQ factorization of a complex M-by-N matrix A:
 | |
| *> A = L * Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the elements on and below the diagonal of the array
 | |
| *>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
 | |
| *>          lower triangular if m <= n); the elements above the diagonal,
 | |
| *>          with the array TAU, represent the unitary matrix Q as a
 | |
| *>          product of elementary reflectors (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,M).
 | |
| *>          For optimum performance LWORK >= M*NB, where NB is the
 | |
| *>          optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**H
 | |
| *>
 | |
| *>  where tau is a complex scalar, and v is a complex vector with
 | |
| *>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
 | |
| *>  A(i,i+1:n), and tau in TAU(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
 | |
|      $                   NBMIN, NX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGELQ2, CLARFB, CLARFT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
 | |
|       LWKOPT = M*NB
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGELQF', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       K = MIN( M, N )
 | |
|       IF( K.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NBMIN = 2
 | |
|       NX = 0
 | |
|       IWS = M
 | |
|       IF( NB.GT.1 .AND. NB.LT.K ) THEN
 | |
| *
 | |
| *        Determine when to cross over from blocked to unblocked code.
 | |
| *
 | |
|          NX = MAX( 0, ILAENV( 3, 'CGELQF', ' ', M, N, -1, -1 ) )
 | |
|          IF( NX.LT.K ) THEN
 | |
| *
 | |
| *           Determine if workspace is large enough for blocked code.
 | |
| *
 | |
|             LDWORK = M
 | |
|             IWS = LDWORK*NB
 | |
|             IF( LWORK.LT.IWS ) THEN
 | |
| *
 | |
| *              Not enough workspace to use optimal NB:  reduce NB and
 | |
| *              determine the minimum value of NB.
 | |
| *
 | |
|                NB = LWORK / LDWORK
 | |
|                NBMIN = MAX( 2, ILAENV( 2, 'CGELQF', ' ', M, N, -1,
 | |
|      $                 -1 ) )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
 | |
| *
 | |
| *        Use blocked code initially
 | |
| *
 | |
|          DO 10 I = 1, K - NX, NB
 | |
|             IB = MIN( K-I+1, NB )
 | |
| *
 | |
| *           Compute the LQ factorization of the current block
 | |
| *           A(i:i+ib-1,i:n)
 | |
| *
 | |
|             CALL CGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
 | |
|      $                   IINFO )
 | |
|             IF( I+IB.LE.M ) THEN
 | |
| *
 | |
| *              Form the triangular factor of the block reflector
 | |
| *              H = H(i) H(i+1) . . . H(i+ib-1)
 | |
| *
 | |
|                CALL CLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
 | |
|      $                      LDA, TAU( I ), WORK, LDWORK )
 | |
| *
 | |
| *              Apply H to A(i+ib:m,i:n) from the right
 | |
| *
 | |
|                CALL CLARFB( 'Right', 'No transpose', 'Forward',
 | |
|      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
 | |
|      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
 | |
|      $                      WORK( IB+1 ), LDWORK )
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          I = 1
 | |
|       END IF
 | |
| *
 | |
| *     Use unblocked code to factor the last or only block.
 | |
| *
 | |
|       IF( I.LE.K )
 | |
|      $   CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
 | |
|      $                IINFO )
 | |
| *
 | |
|       WORK( 1 ) = IWS
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGELQF
 | |
| *
 | |
|       END
 |