904 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			904 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b ZGETSQRHRT */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZGETSQRHRT + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgetsqr
 | 
						|
hrt.f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgetsqr
 | 
						|
hrt.f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgetsqr
 | 
						|
hrt.f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, */
 | 
						|
/*      $                       LWORK, INFO ) */
 | 
						|
/*       IMPLICIT NONE */
 | 
						|
 | 
						|
/*       INTEGER           INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 */
 | 
						|
/*       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > ZGETSQRHRT computes a NB2-sized column blocked QR-factorization */
 | 
						|
/* > of a complex M-by-N matrix A with M >= N, */
 | 
						|
/* > */
 | 
						|
/* >    A = Q * R. */
 | 
						|
/* > */
 | 
						|
/* > The routine uses internally a NB1-sized column blocked and MB1-sized */
 | 
						|
/* > row blocked TSQR-factorization and perfors the reconstruction */
 | 
						|
/* > of the Householder vectors from the TSQR output. The routine also */
 | 
						|
/* > converts the R_tsqr factor from the TSQR-factorization output into */
 | 
						|
/* > the R factor that corresponds to the Householder QR-factorization, */
 | 
						|
/* > */
 | 
						|
/* >    A = Q_tsqr * R_tsqr = Q * R. */
 | 
						|
/* > */
 | 
						|
/* > The output Q and R factors are stored in the same format as in ZGEQRT */
 | 
						|
/* > (Q is in blocked compact WY-representation). See the documentation */
 | 
						|
/* > of ZGEQRT for more details on the format. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of rows of the matrix A.  M >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of columns of the matrix A. M >= N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] MB1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          MB1 is INTEGER */
 | 
						|
/* >          The row block size to be used in the blocked TSQR. */
 | 
						|
/* >          MB1 > N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NB1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NB1 is INTEGER */
 | 
						|
/* >          The column block size to be used in the blocked TSQR. */
 | 
						|
/* >          N >= NB1 >= 1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NB2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NB2 is INTEGER */
 | 
						|
/* >          The block size to be used in the blocked QR that is */
 | 
						|
/* >          output. NB2 >= 1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | 
						|
/* > */
 | 
						|
/* >          On entry: an M-by-N matrix A. */
 | 
						|
/* > */
 | 
						|
/* >          On exit: */
 | 
						|
/* >           a) the elements on and above the diagonal */
 | 
						|
/* >              of the array contain the N-by-N upper-triangular */
 | 
						|
/* >              matrix R corresponding to the Householder QR; */
 | 
						|
/* >           b) the elements below the diagonal represent Q by */
 | 
						|
/* >              the columns of blocked V (compact WY-representation). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] T */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          T is COMPLEX*16 array, dimension (LDT,N)) */
 | 
						|
/* >          The upper triangular block reflectors stored in compact form */
 | 
						|
/* >          as a sequence of upper triangular blocks. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDT is INTEGER */
 | 
						|
/* >          The leading dimension of the array T.  LDT >= NB2. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          The dimension of the array WORK. */
 | 
						|
/* >          LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), */
 | 
						|
/* >          where */
 | 
						|
/* >             NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), */
 | 
						|
/* >             NB1LOCAL = MIN(NB1,N). */
 | 
						|
/* >             LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, */
 | 
						|
/* >             LW1 = NB1LOCAL * N, */
 | 
						|
/* >             LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed. */
 | 
						|
/* >          The routine only calculates the optimal size of the WORK */
 | 
						|
/* >          array, returns this value as the first entry of the WORK */
 | 
						|
/* >          array, and no error message related to LWORK is issued */
 | 
						|
/* >          by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \ingroup comlpex16OTHERcomputational */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > November 2020, Igor Kozachenko, */
 | 
						|
/* >                Computer Science Division, */
 | 
						|
/* >                University of California, Berkeley */
 | 
						|
/* > */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int zgetsqrhrt_(integer *m, integer *n, integer *mb1, 
 | 
						|
	integer *nb1, integer *nb2, doublecomplex *a, integer *lda, 
 | 
						|
	doublecomplex *t, integer *ldt, doublecomplex *work, integer *lwork, 
 | 
						|
	integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4;
 | 
						|
    doublereal d__1, d__2, d__3;
 | 
						|
    doublecomplex z__1, z__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer ldwt, lworkopt, i__, j, iinfo;
 | 
						|
    extern /* Subroutine */ int zungtsqr_row_(integer *, integer *, integer *
 | 
						|
	    , integer *, doublecomplex *, integer *, doublecomplex *, integer 
 | 
						|
	    *, doublecomplex *, integer *, integer *), zcopy_(integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *), 
 | 
						|
	    zunhr_col_(integer *, integer *, integer *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *)
 | 
						|
	    , xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical lquery;
 | 
						|
    integer lw1, lw2, num_all_row_blocks__, lwt, nb1local, nb2local;
 | 
						|
    extern /* Subroutine */ int zlatsqr_(integer *, integer *, integer *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | 
						|
	     doublecomplex *, integer *, integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    t_dim1 = *ldt;
 | 
						|
    t_offset = 1 + t_dim1 * 1;
 | 
						|
    t -= t_offset;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (*m < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0 || *m < *n) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*mb1 <= *n) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*nb1 < 1) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*nb2 < 1) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*lda < f2cmax(1,*m)) {
 | 
						|
	*info = -7;
 | 
						|
    } else /* if(complicated condition) */ {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = 1, i__2 = f2cmin(*nb2,*n);
 | 
						|
	if (*ldt < f2cmax(i__1,i__2)) {
 | 
						|
	    *info = -9;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*        Test the input LWORK for the dimension of the array WORK. */
 | 
						|
/*        This workspace is used to store array: */
 | 
						|
/*        a) Matrix T and WORK for ZLATSQR; */
 | 
						|
/*        b) N-by-N upper-triangular factor R_tsqr; */
 | 
						|
/*        c) Matrix T and array WORK for ZUNGTSQR_ROW; */
 | 
						|
/*        d) Diagonal D for ZUNHR_COL. */
 | 
						|
 | 
						|
	    if (*lwork < *n * *n + 1 && ! lquery) {
 | 
						|
		*info = -11;
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*           Set block size for column blocks */
 | 
						|
 | 
						|
		nb1local = f2cmin(*nb1,*n);
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
		d__3 = (doublereal) (*m - *n) / (doublereal) (*mb1 - *n) + 
 | 
						|
			.5f;
 | 
						|
		d__1 = 1., d__2 = d_int(&d__3);
 | 
						|
		num_all_row_blocks__ = (integer) f2cmax(d__1,d__2);
 | 
						|
 | 
						|
/*           Length and leading dimension of WORK array to place */
 | 
						|
/*           T array in TSQR. */
 | 
						|
 | 
						|
		lwt = num_all_row_blocks__ * *n * nb1local;
 | 
						|
		ldwt = nb1local;
 | 
						|
 | 
						|
/*           Length of TSQR work array */
 | 
						|
 | 
						|
		lw1 = nb1local * *n;
 | 
						|
 | 
						|
/*           Length of ZUNGTSQR_ROW work array. */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = nb1local, i__2 = *n - nb1local;
 | 
						|
		lw2 = nb1local * f2cmax(i__1,i__2);
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
		i__3 = lwt + *n * *n + lw2, i__4 = lwt + *n * *n + *n;
 | 
						|
		i__1 = lwt + lw1, i__2 = f2cmax(i__3,i__4);
 | 
						|
		lworkopt = f2cmax(i__1,i__2);
 | 
						|
 | 
						|
		if (*lwork < f2cmax(1,lworkopt) && ! lquery) {
 | 
						|
		    *info = -11;
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Handle error in the input parameters and return workspace query. */
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZGETSQRHRT", &i__1, (ftnlen)10);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
	z__1.r = (doublereal) lworkopt, z__1.i = 0.;
 | 
						|
	work[1].r = z__1.r, work[1].i = z__1.i;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (f2cmin(*m,*n) == 0) {
 | 
						|
	z__1.r = (doublereal) lworkopt, z__1.i = 0.;
 | 
						|
	work[1].r = z__1.r, work[1].i = z__1.i;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    nb2local = f2cmin(*nb2,*n);
 | 
						|
 | 
						|
 | 
						|
/*     (1) Perform TSQR-factorization of the M-by-N matrix A. */
 | 
						|
 | 
						|
    zlatsqr_(m, n, mb1, &nb1local, &a[a_offset], lda, &work[1], &ldwt, &work[
 | 
						|
	    lwt + 1], &lw1, &iinfo);
 | 
						|
 | 
						|
/*     (2) Copy the factor R_tsqr stored in the upper-triangular part */
 | 
						|
/*         of A into the square matrix in the work array */
 | 
						|
/*         WORK(LWT+1:LWT+N*N) column-by-column. */
 | 
						|
 | 
						|
    i__1 = *n;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
	zcopy_(&j, &a[j * a_dim1 + 1], &c__1, &work[lwt + *n * (j - 1) + 1], &
 | 
						|
		c__1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     (3) Generate a M-by-N matrix Q with orthonormal columns from */
 | 
						|
/*     the result stored below the diagonal in the array A in place. */
 | 
						|
 | 
						|
    zungtsqr_row_(m, n, mb1, &nb1local, &a[a_offset], lda, &work[1], &ldwt, &
 | 
						|
	    work[lwt + *n * *n + 1], &lw2, &iinfo);
 | 
						|
 | 
						|
/*     (4) Perform the reconstruction of Householder vectors from */
 | 
						|
/*     the matrix Q (stored in A) in place. */
 | 
						|
 | 
						|
    zunhr_col_(m, n, &nb2local, &a[a_offset], lda, &t[t_offset], ldt, &work[
 | 
						|
	    lwt + *n * *n + 1], &iinfo);
 | 
						|
 | 
						|
/*     (5) Copy the factor R_tsqr stored in the square matrix in the */
 | 
						|
/*     work array WORK(LWT+1:LWT+N*N) into the upper-triangular */
 | 
						|
/*     part of A. */
 | 
						|
 | 
						|
/*     (6) Compute from R_tsqr the factor R_hr corresponding to */
 | 
						|
/*     the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr. */
 | 
						|
/*     This multiplication by the sign matrix S on the left means */
 | 
						|
/*     changing the sign of I-th row of the matrix R_tsqr according */
 | 
						|
/*     to sign of the I-th diagonal element DIAG(I) of the matrix S. */
 | 
						|
/*     DIAG is stored in WORK( LWT+N*N+1 ) from the ZUNHR_COL output. */
 | 
						|
 | 
						|
/*     (5) and (6) can be combined in a single loop, so the rows in A */
 | 
						|
/*     are accessed only once. */
 | 
						|
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = lwt + *n * *n + i__;
 | 
						|
	z__1.r = -1., z__1.i = 0.;
 | 
						|
	if (work[i__2].r == z__1.r && work[i__2].i == z__1.i) {
 | 
						|
	    i__2 = *n;
 | 
						|
	    for (j = i__; j <= i__2; ++j) {
 | 
						|
		i__3 = i__ + j * a_dim1;
 | 
						|
		z__2.r = -1., z__2.i = 0.;
 | 
						|
		i__4 = lwt + *n * (j - 1) + i__;
 | 
						|
		z__1.r = z__2.r * work[i__4].r - z__2.i * work[i__4].i, 
 | 
						|
			z__1.i = z__2.r * work[i__4].i + z__2.i * work[i__4]
 | 
						|
			.r;
 | 
						|
		a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__2 = *n - i__ + 1;
 | 
						|
	    zcopy_(&i__2, &work[lwt + *n * (i__ - 1) + i__], n, &a[i__ + i__ *
 | 
						|
		     a_dim1], lda);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    z__1.r = (doublereal) lworkopt, z__1.i = 0.;
 | 
						|
    work[1].r = z__1.r, work[1].i = z__1.i;
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of ZGETSQRHRT */
 | 
						|
 | 
						|
} /* zgetsqrhrt_ */
 | 
						|
 |