211 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGETF2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgetf2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgetf2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgetf2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGETF2( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGETF2 computes an LU factorization of a general m-by-n matrix A
 | 
						|
*> using partial pivoting with row interchanges.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = P * L * U
 | 
						|
*> where P is a permutation matrix, L is lower triangular with unit
 | 
						|
*> diagonal elements (lower trapezoidal if m > n), and U is upper
 | 
						|
*> triangular (upper trapezoidal if m < n).
 | 
						|
*>
 | 
						|
*> This is the right-looking Level 2 BLAS version of the algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the m by n matrix to be factored.
 | 
						|
*>          On exit, the factors L and U from the factorization
 | 
						|
*>          A = P*L*U; the unit diagonal elements of L are not stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (min(M,N))
 | 
						|
*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
*>          matrix was interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
 | 
						|
*>               has been completed, but the factor U is exactly
 | 
						|
*>               singular, and division by zero will occur if it is used
 | 
						|
*>               to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGETF2( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               SFMIN
 | 
						|
      INTEGER            I, J, JP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      EXTERNAL           SLAMCH, ISAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGER, SSCAL, SSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGETF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Compute machine safe minimum
 | 
						|
*
 | 
						|
      SFMIN = SLAMCH('S')
 | 
						|
*
 | 
						|
      DO 10 J = 1, MIN( M, N )
 | 
						|
*
 | 
						|
*        Find pivot and test for singularity.
 | 
						|
*
 | 
						|
         JP = J - 1 + ISAMAX( M-J+1, A( J, J ), 1 )
 | 
						|
         IPIV( J ) = JP
 | 
						|
         IF( A( JP, J ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Apply the interchange to columns 1:N.
 | 
						|
*
 | 
						|
            IF( JP.NE.J )
 | 
						|
     $         CALL SSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
 | 
						|
*
 | 
						|
*           Compute elements J+1:M of J-th column.
 | 
						|
*
 | 
						|
            IF( J.LT.M ) THEN
 | 
						|
               IF( ABS(A( J, J )) .GE. SFMIN ) THEN
 | 
						|
                  CALL SSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
 | 
						|
               ELSE
 | 
						|
                 DO 20 I = 1, M-J
 | 
						|
                    A( J+I, J ) = A( J+I, J ) / A( J, J )
 | 
						|
   20            CONTINUE
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE IF( INFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
            INFO = J
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( J.LT.MIN( M, N ) ) THEN
 | 
						|
*
 | 
						|
*           Update trailing submatrix.
 | 
						|
*
 | 
						|
            CALL SGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
 | 
						|
     $                 A( J+1, J+1 ), LDA )
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGETF2
 | 
						|
*
 | 
						|
      END
 |