1219 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1219 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static doublereal c_b11 = 1.;
 | 
						|
static doublereal c_b15 = 0.;
 | 
						|
 | 
						|
/* > \brief \b DSYTRI2X */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download DSYTRI2X + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri2
 | 
						|
x.f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri2
 | 
						|
x.f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri2
 | 
						|
x.f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          UPLO */
 | 
						|
/*       INTEGER            INFO, LDA, N, NB */
 | 
						|
/*       INTEGER            IPIV( * ) */
 | 
						|
/*       DOUBLE PRECISION   A( LDA, * ), WORK( N+NB+1,* ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > DSYTRI2X computes the inverse of a real symmetric indefinite matrix */
 | 
						|
/* > A using the factorization A = U*D*U**T or A = L*D*L**T computed by */
 | 
						|
/* > DSYTRF. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          Specifies whether the details of the factorization are stored */
 | 
						|
/* >          as an upper or lower triangular matrix. */
 | 
						|
/* >          = 'U':  Upper triangular, form is A = U*D*U**T; */
 | 
						|
/* >          = 'L':  Lower triangular, form is A = L*D*L**T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the NNB diagonal matrix D and the multipliers */
 | 
						|
/* >          used to obtain the factor U or L as computed by DSYTRF. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, if INFO = 0, the (symmetric) inverse of the original */
 | 
						|
/* >          matrix.  If UPLO = 'U', the upper triangular part of the */
 | 
						|
/* >          inverse is formed and the part of A below the diagonal is not */
 | 
						|
/* >          referenced; if UPLO = 'L' the lower triangular part of the */
 | 
						|
/* >          inverse is formed and the part of A above the diagonal is */
 | 
						|
/* >          not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IPIV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPIV is INTEGER array, dimension (N) */
 | 
						|
/* >          Details of the interchanges and the NNB structure of D */
 | 
						|
/* >          as determined by DSYTRF. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NB is INTEGER */
 | 
						|
/* >          Block size */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0: successful exit */
 | 
						|
/* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
 | 
						|
/* >               inverse could not be computed. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2017 */
 | 
						|
 | 
						|
/* > \ingroup doubleSYcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int dsytri2x_(char *uplo, integer *n, doublereal *a, integer 
 | 
						|
	*lda, integer *ipiv, doublereal *work, integer *nb, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, work_dim1, work_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer invd;
 | 
						|
    doublereal akkp1;
 | 
						|
    extern /* Subroutine */ int dsyswapr_(char *, integer *, doublereal *, 
 | 
						|
	    integer *, integer *, integer *);
 | 
						|
    doublereal d__;
 | 
						|
    integer i__, j, k;
 | 
						|
    doublereal t;
 | 
						|
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iinfo;
 | 
						|
    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
 | 
						|
	    integer *, integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *);
 | 
						|
    integer count;
 | 
						|
    logical upper;
 | 
						|
    doublereal ak, u01_i_j__;
 | 
						|
    integer u11;
 | 
						|
    doublereal u11_i_j__;
 | 
						|
    integer ip;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dtrtri_(
 | 
						|
	    char *, char *, integer *, doublereal *, integer *, integer *);
 | 
						|
    integer nnb, cut;
 | 
						|
    doublereal akp1;
 | 
						|
    extern /* Subroutine */ int dsyconv_(char *, char *, integer *, 
 | 
						|
	    doublereal *, integer *, integer *, doublereal *, integer *);
 | 
						|
    doublereal u01_ip1_j__, u11_ip1_j__;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.1) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2017 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --ipiv;
 | 
						|
    work_dim1 = *n + *nb + 1;
 | 
						|
    work_offset = 1 + work_dim1 * 1;
 | 
						|
    work -= work_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DSYTRI2X", &i__1, (ftnlen)8);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Convert A */
 | 
						|
/*     Workspace got Non-diag elements of D */
 | 
						|
 | 
						|
    dsyconv_(uplo, "C", n, &a[a_offset], lda, &ipiv[1], &work[work_offset], &
 | 
						|
	    iinfo);
 | 
						|
 | 
						|
/*     Check that the diagonal matrix D is nonsingular. */
 | 
						|
 | 
						|
    if (upper) {
 | 
						|
 | 
						|
/*        Upper triangular storage: examine D from bottom to top */
 | 
						|
 | 
						|
	for (*info = *n; *info >= 1; --(*info)) {
 | 
						|
	    if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) {
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Lower triangular storage: examine D from top to bottom. */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (*info = 1; *info <= i__1; ++(*info)) {
 | 
						|
	    if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) {
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
/*  Splitting Workspace */
 | 
						|
/*     U01 is a block (N,NB+1) */
 | 
						|
/*     The first element of U01 is in WORK(1,1) */
 | 
						|
/*     U11 is a block (NB+1,NB+1) */
 | 
						|
/*     The first element of U11 is in WORK(N+1,1) */
 | 
						|
    u11 = *n;
 | 
						|
/*     INVD is a block (N,2) */
 | 
						|
/*     The first element of INVD is in WORK(1,INVD) */
 | 
						|
    invd = *nb + 2;
 | 
						|
    if (upper) {
 | 
						|
 | 
						|
/*        invA = P * inv(U**T)*inv(D)*inv(U)*P**T. */
 | 
						|
 | 
						|
	dtrtri_(uplo, "U", n, &a[a_offset], lda, info);
 | 
						|
 | 
						|
/*       inv(D) and inv(D)*inv(U) */
 | 
						|
 | 
						|
	k = 1;
 | 
						|
	while(k <= *n) {
 | 
						|
	    if (ipiv[k] > 0) {
 | 
						|
/*           1 x 1 diagonal NNB */
 | 
						|
		work[k + invd * work_dim1] = 1. / a[k + k * a_dim1];
 | 
						|
		work[k + (invd + 1) * work_dim1] = 0.;
 | 
						|
		++k;
 | 
						|
	    } else {
 | 
						|
/*           2 x 2 diagonal NNB */
 | 
						|
		t = work[k + 1 + work_dim1];
 | 
						|
		ak = a[k + k * a_dim1] / t;
 | 
						|
		akp1 = a[k + 1 + (k + 1) * a_dim1] / t;
 | 
						|
		akkp1 = work[k + 1 + work_dim1] / t;
 | 
						|
		d__ = t * (ak * akp1 - 1.);
 | 
						|
		work[k + invd * work_dim1] = akp1 / d__;
 | 
						|
		work[k + 1 + (invd + 1) * work_dim1] = ak / d__;
 | 
						|
		work[k + (invd + 1) * work_dim1] = -akkp1 / d__;
 | 
						|
		work[k + 1 + invd * work_dim1] = -akkp1 / d__;
 | 
						|
		k += 2;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*       inv(U**T) = (inv(U))**T */
 | 
						|
 | 
						|
/*       inv(U**T)*inv(D)*inv(U) */
 | 
						|
 | 
						|
	cut = *n;
 | 
						|
	while(cut > 0) {
 | 
						|
	    nnb = *nb;
 | 
						|
	    if (cut <= nnb) {
 | 
						|
		nnb = cut;
 | 
						|
	    } else {
 | 
						|
		count = 0;
 | 
						|
/*             count negative elements, */
 | 
						|
		i__1 = cut;
 | 
						|
		for (i__ = cut + 1 - nnb; i__ <= i__1; ++i__) {
 | 
						|
		    if (ipiv[i__] < 0) {
 | 
						|
			++count;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/*             need a even number for a clear cut */
 | 
						|
		if (count % 2 == 1) {
 | 
						|
		    ++nnb;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    cut -= nnb;
 | 
						|
 | 
						|
/*          U01 Block */
 | 
						|
 | 
						|
	    i__1 = cut;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    work[i__ + j * work_dim1] = a[i__ + (cut + j) * a_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*          U11 Block */
 | 
						|
 | 
						|
	    i__1 = nnb;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		work[u11 + i__ + i__ * work_dim1] = 1.;
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    work[u11 + i__ + j * work_dim1] = 0.;
 | 
						|
		}
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = i__ + 1; j <= i__2; ++j) {
 | 
						|
		    work[u11 + i__ + j * work_dim1] = a[cut + i__ + (cut + j) 
 | 
						|
			    * a_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*          invD*U01 */
 | 
						|
 | 
						|
	    i__ = 1;
 | 
						|
	    while(i__ <= cut) {
 | 
						|
		if (ipiv[i__] > 0) {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = 1; j <= i__1; ++j) {
 | 
						|
			work[i__ + j * work_dim1] = work[i__ + invd * 
 | 
						|
				work_dim1] * work[i__ + j * work_dim1];
 | 
						|
		    }
 | 
						|
		    ++i__;
 | 
						|
		} else {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = 1; j <= i__1; ++j) {
 | 
						|
			u01_i_j__ = work[i__ + j * work_dim1];
 | 
						|
			u01_ip1_j__ = work[i__ + 1 + j * work_dim1];
 | 
						|
			work[i__ + j * work_dim1] = work[i__ + invd * 
 | 
						|
				work_dim1] * u01_i_j__ + work[i__ + (invd + 1)
 | 
						|
				 * work_dim1] * u01_ip1_j__;
 | 
						|
			work[i__ + 1 + j * work_dim1] = work[i__ + 1 + invd * 
 | 
						|
				work_dim1] * u01_i_j__ + work[i__ + 1 + (invd 
 | 
						|
				+ 1) * work_dim1] * u01_ip1_j__;
 | 
						|
		    }
 | 
						|
		    i__ += 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*        invD1*U11 */
 | 
						|
 | 
						|
	    i__ = 1;
 | 
						|
	    while(i__ <= nnb) {
 | 
						|
		if (ipiv[cut + i__] > 0) {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = i__; j <= i__1; ++j) {
 | 
						|
			work[u11 + i__ + j * work_dim1] = work[cut + i__ + 
 | 
						|
				invd * work_dim1] * work[u11 + i__ + j * 
 | 
						|
				work_dim1];
 | 
						|
		    }
 | 
						|
		    ++i__;
 | 
						|
		} else {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = i__; j <= i__1; ++j) {
 | 
						|
			u11_i_j__ = work[u11 + i__ + j * work_dim1];
 | 
						|
			u11_ip1_j__ = work[u11 + i__ + 1 + j * work_dim1];
 | 
						|
			work[u11 + i__ + j * work_dim1] = work[cut + i__ + 
 | 
						|
				invd * work_dim1] * work[u11 + i__ + j * 
 | 
						|
				work_dim1] + work[cut + i__ + (invd + 1) * 
 | 
						|
				work_dim1] * work[u11 + i__ + 1 + j * 
 | 
						|
				work_dim1];
 | 
						|
			work[u11 + i__ + 1 + j * work_dim1] = work[cut + i__ 
 | 
						|
				+ 1 + invd * work_dim1] * u11_i_j__ + work[
 | 
						|
				cut + i__ + 1 + (invd + 1) * work_dim1] * 
 | 
						|
				u11_ip1_j__;
 | 
						|
		    }
 | 
						|
		    i__ += 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*       U11**T*invD1*U11->U11 */
 | 
						|
 | 
						|
	    i__1 = *n + *nb + 1;
 | 
						|
	    dtrmm_("L", "U", "T", "U", &nnb, &nnb, &c_b11, &a[cut + 1 + (cut 
 | 
						|
		    + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
 | 
						|
 | 
						|
	    i__1 = nnb;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = i__; j <= i__2; ++j) {
 | 
						|
		    a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j * 
 | 
						|
			    work_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*          U01**T*invD*U01->A(CUT+I,CUT+J) */
 | 
						|
 | 
						|
	    i__1 = *n + *nb + 1;
 | 
						|
	    i__2 = *n + *nb + 1;
 | 
						|
	    dgemm_("T", "N", &nnb, &nnb, &cut, &c_b11, &a[(cut + 1) * a_dim1 
 | 
						|
		    + 1], lda, &work[work_offset], &i__1, &c_b15, &work[u11 + 
 | 
						|
		    1 + work_dim1], &i__2);
 | 
						|
 | 
						|
/*        U11 =  U11**T*invD1*U11 + U01**T*invD*U01 */
 | 
						|
 | 
						|
	    i__1 = nnb;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = i__; j <= i__2; ++j) {
 | 
						|
		    a[cut + i__ + (cut + j) * a_dim1] += work[u11 + i__ + j * 
 | 
						|
			    work_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*        U01 =  U00**T*invD0*U01 */
 | 
						|
 | 
						|
	    i__1 = *n + *nb + 1;
 | 
						|
	    dtrmm_("L", uplo, "T", "U", &cut, &nnb, &c_b11, &a[a_offset], lda,
 | 
						|
		     &work[work_offset], &i__1);
 | 
						|
 | 
						|
/*        Update U01 */
 | 
						|
 | 
						|
	    i__1 = cut;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    a[i__ + (cut + j) * a_dim1] = work[i__ + j * work_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*      Next Block */
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
/*        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T */
 | 
						|
 | 
						|
	i__ = 1;
 | 
						|
	while(i__ <= *n) {
 | 
						|
	    if (ipiv[i__] > 0) {
 | 
						|
		ip = ipiv[i__];
 | 
						|
		if (i__ < ip) {
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
 | 
						|
		}
 | 
						|
		if (i__ > ip) {
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		ip = -ipiv[i__];
 | 
						|
		++i__;
 | 
						|
		if (i__ - 1 < ip) {
 | 
						|
		    i__1 = i__ - 1;
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &i__1, &ip);
 | 
						|
		}
 | 
						|
		if (i__ - 1 > ip) {
 | 
						|
		    i__1 = i__ - 1;
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__1);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    ++i__;
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        LOWER... */
 | 
						|
 | 
						|
/*        invA = P * inv(U**T)*inv(D)*inv(U)*P**T. */
 | 
						|
 | 
						|
	dtrtri_(uplo, "U", n, &a[a_offset], lda, info);
 | 
						|
 | 
						|
/*       inv(D) and inv(D)*inv(U) */
 | 
						|
 | 
						|
	k = *n;
 | 
						|
	while(k >= 1) {
 | 
						|
	    if (ipiv[k] > 0) {
 | 
						|
/*           1 x 1 diagonal NNB */
 | 
						|
		work[k + invd * work_dim1] = 1. / a[k + k * a_dim1];
 | 
						|
		work[k + (invd + 1) * work_dim1] = 0.;
 | 
						|
		--k;
 | 
						|
	    } else {
 | 
						|
/*           2 x 2 diagonal NNB */
 | 
						|
		t = work[k - 1 + work_dim1];
 | 
						|
		ak = a[k - 1 + (k - 1) * a_dim1] / t;
 | 
						|
		akp1 = a[k + k * a_dim1] / t;
 | 
						|
		akkp1 = work[k - 1 + work_dim1] / t;
 | 
						|
		d__ = t * (ak * akp1 - 1.);
 | 
						|
		work[k - 1 + invd * work_dim1] = akp1 / d__;
 | 
						|
		work[k + invd * work_dim1] = ak / d__;
 | 
						|
		work[k + (invd + 1) * work_dim1] = -akkp1 / d__;
 | 
						|
		work[k - 1 + (invd + 1) * work_dim1] = -akkp1 / d__;
 | 
						|
		k += -2;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*       inv(U**T) = (inv(U))**T */
 | 
						|
 | 
						|
/*       inv(U**T)*inv(D)*inv(U) */
 | 
						|
 | 
						|
	cut = 0;
 | 
						|
	while(cut < *n) {
 | 
						|
	    nnb = *nb;
 | 
						|
	    if (cut + nnb > *n) {
 | 
						|
		nnb = *n - cut;
 | 
						|
	    } else {
 | 
						|
		count = 0;
 | 
						|
/*             count negative elements, */
 | 
						|
		i__1 = cut + nnb;
 | 
						|
		for (i__ = cut + 1; i__ <= i__1; ++i__) {
 | 
						|
		    if (ipiv[i__] < 0) {
 | 
						|
			++count;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/*             need a even number for a clear cut */
 | 
						|
		if (count % 2 == 1) {
 | 
						|
		    ++nnb;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/*     L21 Block */
 | 
						|
	    i__1 = *n - cut - nnb;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    work[i__ + j * work_dim1] = a[cut + nnb + i__ + (cut + j) 
 | 
						|
			    * a_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/*     L11 Block */
 | 
						|
	    i__1 = nnb;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		work[u11 + i__ + i__ * work_dim1] = 1.;
 | 
						|
		i__2 = nnb;
 | 
						|
		for (j = i__ + 1; j <= i__2; ++j) {
 | 
						|
		    work[u11 + i__ + j * work_dim1] = 0.;
 | 
						|
		}
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    work[u11 + i__ + j * work_dim1] = a[cut + i__ + (cut + j) 
 | 
						|
			    * a_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*          invD*L21 */
 | 
						|
 | 
						|
	    i__ = *n - cut - nnb;
 | 
						|
	    while(i__ >= 1) {
 | 
						|
		if (ipiv[cut + nnb + i__] > 0) {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = 1; j <= i__1; ++j) {
 | 
						|
			work[i__ + j * work_dim1] = work[cut + nnb + i__ + 
 | 
						|
				invd * work_dim1] * work[i__ + j * work_dim1];
 | 
						|
		    }
 | 
						|
		    --i__;
 | 
						|
		} else {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = 1; j <= i__1; ++j) {
 | 
						|
			u01_i_j__ = work[i__ + j * work_dim1];
 | 
						|
			u01_ip1_j__ = work[i__ - 1 + j * work_dim1];
 | 
						|
			work[i__ + j * work_dim1] = work[cut + nnb + i__ + 
 | 
						|
				invd * work_dim1] * u01_i_j__ + work[cut + 
 | 
						|
				nnb + i__ + (invd + 1) * work_dim1] * 
 | 
						|
				u01_ip1_j__;
 | 
						|
			work[i__ - 1 + j * work_dim1] = work[cut + nnb + i__ 
 | 
						|
				- 1 + (invd + 1) * work_dim1] * u01_i_j__ + 
 | 
						|
				work[cut + nnb + i__ - 1 + invd * work_dim1] *
 | 
						|
				 u01_ip1_j__;
 | 
						|
		    }
 | 
						|
		    i__ += -2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*        invD1*L11 */
 | 
						|
 | 
						|
	    i__ = nnb;
 | 
						|
	    while(i__ >= 1) {
 | 
						|
		if (ipiv[cut + i__] > 0) {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = 1; j <= i__1; ++j) {
 | 
						|
			work[u11 + i__ + j * work_dim1] = work[cut + i__ + 
 | 
						|
				invd * work_dim1] * work[u11 + i__ + j * 
 | 
						|
				work_dim1];
 | 
						|
		    }
 | 
						|
		    --i__;
 | 
						|
		} else {
 | 
						|
		    i__1 = nnb;
 | 
						|
		    for (j = 1; j <= i__1; ++j) {
 | 
						|
			u11_i_j__ = work[u11 + i__ + j * work_dim1];
 | 
						|
			u11_ip1_j__ = work[u11 + i__ - 1 + j * work_dim1];
 | 
						|
			work[u11 + i__ + j * work_dim1] = work[cut + i__ + 
 | 
						|
				invd * work_dim1] * work[u11 + i__ + j * 
 | 
						|
				work_dim1] + work[cut + i__ + (invd + 1) * 
 | 
						|
				work_dim1] * u11_ip1_j__;
 | 
						|
			work[u11 + i__ - 1 + j * work_dim1] = work[cut + i__ 
 | 
						|
				- 1 + (invd + 1) * work_dim1] * u11_i_j__ + 
 | 
						|
				work[cut + i__ - 1 + invd * work_dim1] * 
 | 
						|
				u11_ip1_j__;
 | 
						|
		    }
 | 
						|
		    i__ += -2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*       L11**T*invD1*L11->L11 */
 | 
						|
 | 
						|
	    i__1 = *n + *nb + 1;
 | 
						|
	    dtrmm_("L", uplo, "T", "U", &nnb, &nnb, &c_b11, &a[cut + 1 + (cut 
 | 
						|
		    + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
 | 
						|
 | 
						|
	    i__1 = nnb;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = i__;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j * 
 | 
						|
			    work_dim1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (cut + nnb < *n) {
 | 
						|
 | 
						|
/*          L21**T*invD2*L21->A(CUT+I,CUT+J) */
 | 
						|
 | 
						|
		i__1 = *n - nnb - cut;
 | 
						|
		i__2 = *n + *nb + 1;
 | 
						|
		i__3 = *n + *nb + 1;
 | 
						|
		dgemm_("T", "N", &nnb, &nnb, &i__1, &c_b11, &a[cut + nnb + 1 
 | 
						|
			+ (cut + 1) * a_dim1], lda, &work[work_offset], &i__2,
 | 
						|
			 &c_b15, &work[u11 + 1 + work_dim1], &i__3);
 | 
						|
 | 
						|
/*        L11 =  L11**T*invD1*L11 + U01**T*invD*U01 */
 | 
						|
 | 
						|
		i__1 = nnb;
 | 
						|
		for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		    i__2 = i__;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			a[cut + i__ + (cut + j) * a_dim1] += work[u11 + i__ + 
 | 
						|
				j * work_dim1];
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
/*        L01 =  L22**T*invD2*L21 */
 | 
						|
 | 
						|
		i__1 = *n - nnb - cut;
 | 
						|
		i__2 = *n + *nb + 1;
 | 
						|
		dtrmm_("L", uplo, "T", "U", &i__1, &nnb, &c_b11, &a[cut + nnb 
 | 
						|
			+ 1 + (cut + nnb + 1) * a_dim1], lda, &work[
 | 
						|
			work_offset], &i__2);
 | 
						|
 | 
						|
/*      Update L21 */
 | 
						|
 | 
						|
		i__1 = *n - cut - nnb;
 | 
						|
		for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		    i__2 = nnb;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			a[cut + nnb + i__ + (cut + j) * a_dim1] = work[i__ + 
 | 
						|
				j * work_dim1];
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*        L11 =  L11**T*invD1*L11 */
 | 
						|
 | 
						|
		i__1 = nnb;
 | 
						|
		for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		    i__2 = i__;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + 
 | 
						|
				j * work_dim1];
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*      Next Block */
 | 
						|
 | 
						|
	    cut += nnb;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T */
 | 
						|
 | 
						|
	i__ = *n;
 | 
						|
	while(i__ >= 1) {
 | 
						|
	    if (ipiv[i__] > 0) {
 | 
						|
		ip = ipiv[i__];
 | 
						|
		if (i__ < ip) {
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
 | 
						|
		}
 | 
						|
		if (i__ > ip) {
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		ip = -ipiv[i__];
 | 
						|
		if (i__ < ip) {
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
 | 
						|
		}
 | 
						|
		if (i__ > ip) {
 | 
						|
		    dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
 | 
						|
		}
 | 
						|
		--i__;
 | 
						|
	    }
 | 
						|
	    --i__;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DSYTRI2X */
 | 
						|
 | 
						|
} /* dsytri2x_ */
 | 
						|
 |