520 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSBGVX
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSBGVX + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvx.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvx.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvx.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
 | 
						|
*                          LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
 | 
						|
*                          LDZ, WORK, IWORK, IFAIL, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, RANGE, UPLO
 | 
						|
*       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
 | 
						|
*      $                   N
 | 
						|
*       DOUBLE PRECISION   ABSTOL, VL, VU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IFAIL( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
 | 
						|
*      $                   W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSBGVX computes selected eigenvalues, and optionally, eigenvectors
 | 
						|
*> of a real generalized symmetric-definite banded eigenproblem, of
 | 
						|
*> the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
 | 
						|
*> and banded, and B is also positive definite.  Eigenvalues and
 | 
						|
*> eigenvectors can be selected by specifying either all eigenvalues,
 | 
						|
*> a range of values or a range of indices for the desired eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANGE
 | 
						|
*> \verbatim
 | 
						|
*>          RANGE is CHARACTER*1
 | 
						|
*>          = 'A': all eigenvalues will be found.
 | 
						|
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | 
						|
*>                 will be found.
 | 
						|
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangles of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangles of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KA
 | 
						|
*> \verbatim
 | 
						|
*>          KA is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KB
 | 
						|
*> \verbatim
 | 
						|
*>          KB is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix B if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric band
 | 
						|
*>          matrix A, stored in the first ka+1 rows of the array.  The
 | 
						|
*>          j-th column of A is stored in the j-th column of the array AB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 | 
						|
*>
 | 
						|
*>          On exit, the contents of AB are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KA+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] BB
 | 
						|
*> \verbatim
 | 
						|
*>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric band
 | 
						|
*>          matrix B, stored in the first kb+1 rows of the array.  The
 | 
						|
*>          j-th column of B is stored in the j-th column of the array BB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 | 
						|
*>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 | 
						|
*>
 | 
						|
*>          On exit, the factor S from the split Cholesky factorization
 | 
						|
*>          B = S**T*S, as returned by DPBSTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDBB
 | 
						|
*> \verbatim
 | 
						|
*>          LDBB is INTEGER
 | 
						|
*>          The leading dimension of the array BB.  LDBB >= KB+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
 | 
						|
*>          If JOBZ = 'V', the n-by-n matrix used in the reduction of
 | 
						|
*>          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
 | 
						|
*>          and consequently C to tridiagonal form.
 | 
						|
*>          If JOBZ = 'N', the array Q is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  If JOBZ = 'N',
 | 
						|
*>          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          If RANGE='V', the lower bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VU
 | 
						|
*> \verbatim
 | 
						|
*>          VU is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          If RANGE='V', the upper bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IL
 | 
						|
*> \verbatim
 | 
						|
*>          IL is INTEGER
 | 
						|
*>
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          smallest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IU
 | 
						|
*> \verbatim
 | 
						|
*>          IU is INTEGER
 | 
						|
*>
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          largest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ABSTOL
 | 
						|
*> \verbatim
 | 
						|
*>          ABSTOL is DOUBLE PRECISION
 | 
						|
*>          The absolute error tolerance for the eigenvalues.
 | 
						|
*>          An approximate eigenvalue is accepted as converged
 | 
						|
*>          when it is determined to lie in an interval [a,b]
 | 
						|
*>          of width less than or equal to
 | 
						|
*>
 | 
						|
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | 
						|
*>
 | 
						|
*>          where EPS is the machine precision.  If ABSTOL is less than
 | 
						|
*>          or equal to zero, then  EPS*|T|  will be used in its place,
 | 
						|
*>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | 
						|
*>          by reducing A to tridiagonal form.
 | 
						|
*>
 | 
						|
*>          Eigenvalues will be computed most accurately when ABSTOL is
 | 
						|
*>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
 | 
						|
*>          If this routine returns with INFO>0, indicating that some
 | 
						|
*>          eigenvectors did not converge, try setting ABSTOL to
 | 
						|
*>          2*DLAMCH('S').
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The total number of eigenvalues found.  0 <= M <= N.
 | 
						|
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | 
						|
*>          eigenvectors, with the i-th column of Z holding the
 | 
						|
*>          eigenvector associated with W(i).  The eigenvectors are
 | 
						|
*>          normalized so Z**T*B*Z = I.
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (7*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (5*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IFAIL
 | 
						|
*> \verbatim
 | 
						|
*>          IFAIL is INTEGER array, dimension (M)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | 
						|
*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | 
						|
*>          indices of the eigenvalues that failed to converge.
 | 
						|
*>          If JOBZ = 'N', then IFAIL is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          <= N: if INFO = i, then i eigenvectors failed to converge.
 | 
						|
*>                  Their indices are stored in IFAIL.
 | 
						|
*>          > N:  DPBSTF returned an error code; i.e.,
 | 
						|
*>                if INFO = N + i, for 1 <= i <= N, then the leading
 | 
						|
*>                minor of order i of B is not positive definite.
 | 
						|
*>                The factorization of B could not be completed and
 | 
						|
*>                no eigenvalues or eigenvectors were computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHEReigen
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
 | 
						|
     $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
 | 
						|
     $                   LDZ, WORK, IWORK, IFAIL, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, RANGE, UPLO
 | 
						|
      INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
 | 
						|
     $                   N
 | 
						|
      DOUBLE PRECISION   ABSTOL, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IFAIL( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
 | 
						|
     $                   W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
 | 
						|
      CHARACTER          ORDER, VECT
 | 
						|
      INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
 | 
						|
     $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
 | 
						|
      DOUBLE PRECISION   TMP1
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
 | 
						|
     $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      ALLEIG = LSAME( RANGE, 'A' )
 | 
						|
      VALEIG = LSAME( RANGE, 'V' )
 | 
						|
      INDEIG = LSAME( RANGE, 'I' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( KA.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDAB.LT.KA+1 ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDBB.LT.KB+1 ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE
 | 
						|
         IF( VALEIG ) THEN
 | 
						|
            IF( N.GT.0 .AND. VU.LE.VL )
 | 
						|
     $         INFO = -14
 | 
						|
         ELSE IF( INDEIG ) THEN
 | 
						|
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | 
						|
               INFO = -15
 | 
						|
            ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | 
						|
               INFO = -16
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0) THEN
 | 
						|
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
            INFO = -21
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSBGVX', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      M = 0
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form a split Cholesky factorization of B.
 | 
						|
*
 | 
						|
      CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         INFO = N + INFO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Transform problem to standard eigenvalue problem.
 | 
						|
*
 | 
						|
      CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
 | 
						|
     $             WORK, IINFO )
 | 
						|
*
 | 
						|
*     Reduce symmetric band matrix to tridiagonal form.
 | 
						|
*
 | 
						|
      INDD = 1
 | 
						|
      INDE = INDD + N
 | 
						|
      INDWRK = INDE + N
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         VECT = 'U'
 | 
						|
      ELSE
 | 
						|
         VECT = 'N'
 | 
						|
      END IF
 | 
						|
      CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
 | 
						|
     $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
 | 
						|
*
 | 
						|
*     If all eigenvalues are desired and ABSTOL is less than or equal
 | 
						|
*     to zero, then call DSTERF or SSTEQR.  If this fails for some
 | 
						|
*     eigenvalue, then try DSTEBZ.
 | 
						|
*
 | 
						|
      TEST = .FALSE.
 | 
						|
      IF( INDEIG ) THEN
 | 
						|
         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
 | 
						|
            TEST = .TRUE.
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
 | 
						|
         CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
 | 
						|
         INDEE = INDWRK + 2*N
 | 
						|
         CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
 | 
						|
         IF( .NOT.WANTZ ) THEN
 | 
						|
            CALL DSTERF( N, W, WORK( INDEE ), INFO )
 | 
						|
         ELSE
 | 
						|
            CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
 | 
						|
            CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
 | 
						|
     $                   WORK( INDWRK ), INFO )
 | 
						|
            IF( INFO.EQ.0 ) THEN
 | 
						|
               DO 10 I = 1, N
 | 
						|
                  IFAIL( I ) = 0
 | 
						|
   10          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            M = N
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Otherwise, call DSTEBZ and, if eigenvectors are desired,
 | 
						|
*     call DSTEIN.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         ORDER = 'B'
 | 
						|
      ELSE
 | 
						|
         ORDER = 'E'
 | 
						|
      END IF
 | 
						|
      INDIBL = 1
 | 
						|
      INDISP = INDIBL + N
 | 
						|
      INDIWO = INDISP + N
 | 
						|
      CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
 | 
						|
     $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
 | 
						|
     $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
 | 
						|
     $             IWORK( INDIWO ), INFO )
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
 | 
						|
     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
 | 
						|
     $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
 | 
						|
*
 | 
						|
*        Apply transformation matrix used in reduction to tridiagonal
 | 
						|
*        form to eigenvectors returned by DSTEIN.
 | 
						|
*
 | 
						|
         DO 20 J = 1, M
 | 
						|
            CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
 | 
						|
            CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
 | 
						|
     $                  Z( 1, J ), 1 )
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     If eigenvalues are not in order, then sort them, along with
 | 
						|
*     eigenvectors.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         DO 50 J = 1, M - 1
 | 
						|
            I = 0
 | 
						|
            TMP1 = W( J )
 | 
						|
            DO 40 JJ = J + 1, M
 | 
						|
               IF( W( JJ ).LT.TMP1 ) THEN
 | 
						|
                  I = JJ
 | 
						|
                  TMP1 = W( JJ )
 | 
						|
               END IF
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
            IF( I.NE.0 ) THEN
 | 
						|
               ITMP1 = IWORK( INDIBL+I-1 )
 | 
						|
               W( I ) = W( J )
 | 
						|
               IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
 | 
						|
               W( J ) = TMP1
 | 
						|
               IWORK( INDIBL+J-1 ) = ITMP1
 | 
						|
               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  ITMP1 = IFAIL( I )
 | 
						|
                  IFAIL( I ) = IFAIL( J )
 | 
						|
                  IFAIL( J ) = ITMP1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSBGVX
 | 
						|
*
 | 
						|
      END
 |