309 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLANV2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanv2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanv2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanv2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
 | 
						|
*> matrix in standard form:
 | 
						|
*>
 | 
						|
*>      [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
 | 
						|
*>      [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
 | 
						|
*>
 | 
						|
*> where either
 | 
						|
*> 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
 | 
						|
*> 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
 | 
						|
*> conjugate eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION
 | 
						|
*>          On entry, the elements of the input matrix.
 | 
						|
*>          On exit, they are overwritten by the elements of the
 | 
						|
*>          standardised Schur form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT1R
 | 
						|
*> \verbatim
 | 
						|
*>          RT1R is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT1I
 | 
						|
*> \verbatim
 | 
						|
*>          RT1I is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT2R
 | 
						|
*> \verbatim
 | 
						|
*>          RT2R is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT2I
 | 
						|
*> \verbatim
 | 
						|
*>          RT2I is DOUBLE PRECISION
 | 
						|
*>          The real and imaginary parts of the eigenvalues. If the
 | 
						|
*>          eigenvalues are a complex conjugate pair, RT1I > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CS
 | 
						|
*> \verbatim
 | 
						|
*>          CS is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SN
 | 
						|
*> \verbatim
 | 
						|
*>          SN is DOUBLE PRECISION
 | 
						|
*>          Parameters of the rotation matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Modified by V. Sima, Research Institute for Informatics, Bucharest,
 | 
						|
*>  Romania, to reduce the risk of cancellation errors,
 | 
						|
*>  when computing real eigenvalues, and to ensure, if possible, that
 | 
						|
*>  abs(RT1R) >= abs(RT2R).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, HALF, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
 | 
						|
     $                     TWO = 2.0D0 )
 | 
						|
      DOUBLE PRECISION   MULTPL
 | 
						|
      PARAMETER          ( MULTPL = 4.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
 | 
						|
     $                   SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z, SAFMIN, 
 | 
						|
     $                   SAFMN2, SAFMX2
 | 
						|
      INTEGER            COUNT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLAPY2
 | 
						|
      EXTERNAL           DLAMCH, DLAPY2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      SAFMIN = DLAMCH( 'S' )
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
 | 
						|
     $            LOG( DLAMCH( 'B' ) ) / TWO )
 | 
						|
      SAFMX2 = ONE / SAFMN2
 | 
						|
      IF( C.EQ.ZERO ) THEN
 | 
						|
         CS = ONE
 | 
						|
         SN = ZERO
 | 
						|
*
 | 
						|
      ELSE IF( B.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Swap rows and columns
 | 
						|
*
 | 
						|
         CS = ZERO
 | 
						|
         SN = ONE
 | 
						|
         TEMP = D
 | 
						|
         D = A
 | 
						|
         A = TEMP
 | 
						|
         B = -C
 | 
						|
         C = ZERO
 | 
						|
*
 | 
						|
      ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
 | 
						|
     $          THEN
 | 
						|
         CS = ONE
 | 
						|
         SN = ZERO
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
         TEMP = A - D
 | 
						|
         P = HALF*TEMP
 | 
						|
         BCMAX = MAX( ABS( B ), ABS( C ) )
 | 
						|
         BCMIS = MIN( ABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
 | 
						|
         SCALE = MAX( ABS( P ), BCMAX )
 | 
						|
         Z = ( P / SCALE )*P + ( BCMAX / SCALE )*BCMIS
 | 
						|
*
 | 
						|
*        If Z is of the order of the machine accuracy, postpone the
 | 
						|
*        decision on the nature of eigenvalues
 | 
						|
*
 | 
						|
         IF( Z.GE.MULTPL*EPS ) THEN
 | 
						|
*
 | 
						|
*           Real eigenvalues. Compute A and D.
 | 
						|
*
 | 
						|
            Z = P + SIGN( SQRT( SCALE )*SQRT( Z ), P )
 | 
						|
            A = D + Z
 | 
						|
            D = D - ( BCMAX / Z )*BCMIS
 | 
						|
*
 | 
						|
*           Compute B and the rotation matrix
 | 
						|
*
 | 
						|
            TAU = DLAPY2( C, Z )
 | 
						|
            CS = Z / TAU
 | 
						|
            SN = C / TAU
 | 
						|
            B = B - C
 | 
						|
            C = ZERO
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Complex eigenvalues, or real (almost) equal eigenvalues.
 | 
						|
*           Make diagonal elements equal.
 | 
						|
*
 | 
						|
            COUNT = 0
 | 
						|
            SIGMA = B + C
 | 
						|
   10       CONTINUE
 | 
						|
            COUNT = COUNT + 1
 | 
						|
            SCALE = MAX( ABS(TEMP), ABS(SIGMA) )
 | 
						|
            IF( SCALE.GE.SAFMX2 ) THEN
 | 
						|
               SIGMA = SIGMA * SAFMN2
 | 
						|
               TEMP = TEMP * SAFMN2
 | 
						|
               IF (COUNT .LE. 20)
 | 
						|
     $            GOTO 10
 | 
						|
            END IF
 | 
						|
            IF( SCALE.LE.SAFMN2 ) THEN
 | 
						|
               SIGMA = SIGMA * SAFMX2
 | 
						|
               TEMP = TEMP * SAFMX2
 | 
						|
               IF (COUNT .LE. 20)
 | 
						|
     $            GOTO 10
 | 
						|
            END IF
 | 
						|
            P = HALF*TEMP
 | 
						|
            TAU = DLAPY2( SIGMA, TEMP )
 | 
						|
            CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
 | 
						|
            SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
 | 
						|
*
 | 
						|
*           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
 | 
						|
*                   [ CC  DD ]   [ C  D ] [ SN  CS ]
 | 
						|
*
 | 
						|
            AA = A*CS + B*SN
 | 
						|
            BB = -A*SN + B*CS
 | 
						|
            CC = C*CS + D*SN
 | 
						|
            DD = -C*SN + D*CS
 | 
						|
*
 | 
						|
*           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
 | 
						|
*                   [ C  D ]   [-SN  CS ] [ CC  DD ]
 | 
						|
*
 | 
						|
            A = AA*CS + CC*SN
 | 
						|
            B = BB*CS + DD*SN
 | 
						|
            C = -AA*SN + CC*CS
 | 
						|
            D = -BB*SN + DD*CS
 | 
						|
*
 | 
						|
            TEMP = HALF*( A+D )
 | 
						|
            A = TEMP
 | 
						|
            D = TEMP
 | 
						|
*
 | 
						|
            IF( C.NE.ZERO ) THEN
 | 
						|
               IF( B.NE.ZERO ) THEN
 | 
						|
                  IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
 | 
						|
*
 | 
						|
*                    Real eigenvalues: reduce to upper triangular form
 | 
						|
*
 | 
						|
                     SAB = SQRT( ABS( B ) )
 | 
						|
                     SAC = SQRT( ABS( C ) )
 | 
						|
                     P = SIGN( SAB*SAC, C )
 | 
						|
                     TAU = ONE / SQRT( ABS( B+C ) )
 | 
						|
                     A = TEMP + P
 | 
						|
                     D = TEMP - P
 | 
						|
                     B = B - C
 | 
						|
                     C = ZERO
 | 
						|
                     CS1 = SAB*TAU
 | 
						|
                     SN1 = SAC*TAU
 | 
						|
                     TEMP = CS*CS1 - SN*SN1
 | 
						|
                     SN = CS*SN1 + SN*CS1
 | 
						|
                     CS = TEMP
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  B = -C
 | 
						|
                  C = ZERO
 | 
						|
                  TEMP = CS
 | 
						|
                  CS = -SN
 | 
						|
                  SN = TEMP
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
 | 
						|
*
 | 
						|
      RT1R = A
 | 
						|
      RT2R = D
 | 
						|
      IF( C.EQ.ZERO ) THEN
 | 
						|
         RT1I = ZERO
 | 
						|
         RT2I = ZERO
 | 
						|
      ELSE
 | 
						|
         RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
 | 
						|
         RT2I = -RT1I
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLANV2
 | 
						|
*
 | 
						|
      END
 |