1169 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1169 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						||
#include <stdlib.h>
 | 
						||
#include <string.h>
 | 
						||
#include <stdio.h>
 | 
						||
#include <complex.h>
 | 
						||
#ifdef complex
 | 
						||
#undef complex
 | 
						||
#endif
 | 
						||
#ifdef I
 | 
						||
#undef I
 | 
						||
#endif
 | 
						||
 | 
						||
#if defined(_WIN64)
 | 
						||
typedef long long BLASLONG;
 | 
						||
typedef unsigned long long BLASULONG;
 | 
						||
#else
 | 
						||
typedef long BLASLONG;
 | 
						||
typedef unsigned long BLASULONG;
 | 
						||
#endif
 | 
						||
 | 
						||
#ifdef LAPACK_ILP64
 | 
						||
typedef BLASLONG blasint;
 | 
						||
#if defined(_WIN64)
 | 
						||
#define blasabs(x) llabs(x)
 | 
						||
#else
 | 
						||
#define blasabs(x) labs(x)
 | 
						||
#endif
 | 
						||
#else
 | 
						||
typedef int blasint;
 | 
						||
#define blasabs(x) abs(x)
 | 
						||
#endif
 | 
						||
 | 
						||
typedef blasint integer;
 | 
						||
 | 
						||
typedef unsigned int uinteger;
 | 
						||
typedef char *address;
 | 
						||
typedef short int shortint;
 | 
						||
typedef float real;
 | 
						||
typedef double doublereal;
 | 
						||
typedef struct { real r, i; } complex;
 | 
						||
typedef struct { doublereal r, i; } doublecomplex;
 | 
						||
#ifdef _MSC_VER
 | 
						||
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						||
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						||
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						||
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						||
#else
 | 
						||
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						||
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						||
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						||
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						||
#endif
 | 
						||
#define pCf(z) (*_pCf(z))
 | 
						||
#define pCd(z) (*_pCd(z))
 | 
						||
typedef int logical;
 | 
						||
typedef short int shortlogical;
 | 
						||
typedef char logical1;
 | 
						||
typedef char integer1;
 | 
						||
 | 
						||
#define TRUE_ (1)
 | 
						||
#define FALSE_ (0)
 | 
						||
 | 
						||
/* Extern is for use with -E */
 | 
						||
#ifndef Extern
 | 
						||
#define Extern extern
 | 
						||
#endif
 | 
						||
 | 
						||
/* I/O stuff */
 | 
						||
 | 
						||
typedef int flag;
 | 
						||
typedef int ftnlen;
 | 
						||
typedef int ftnint;
 | 
						||
 | 
						||
/*external read, write*/
 | 
						||
typedef struct
 | 
						||
{	flag cierr;
 | 
						||
	ftnint ciunit;
 | 
						||
	flag ciend;
 | 
						||
	char *cifmt;
 | 
						||
	ftnint cirec;
 | 
						||
} cilist;
 | 
						||
 | 
						||
/*internal read, write*/
 | 
						||
typedef struct
 | 
						||
{	flag icierr;
 | 
						||
	char *iciunit;
 | 
						||
	flag iciend;
 | 
						||
	char *icifmt;
 | 
						||
	ftnint icirlen;
 | 
						||
	ftnint icirnum;
 | 
						||
} icilist;
 | 
						||
 | 
						||
/*open*/
 | 
						||
typedef struct
 | 
						||
{	flag oerr;
 | 
						||
	ftnint ounit;
 | 
						||
	char *ofnm;
 | 
						||
	ftnlen ofnmlen;
 | 
						||
	char *osta;
 | 
						||
	char *oacc;
 | 
						||
	char *ofm;
 | 
						||
	ftnint orl;
 | 
						||
	char *oblnk;
 | 
						||
} olist;
 | 
						||
 | 
						||
/*close*/
 | 
						||
typedef struct
 | 
						||
{	flag cerr;
 | 
						||
	ftnint cunit;
 | 
						||
	char *csta;
 | 
						||
} cllist;
 | 
						||
 | 
						||
/*rewind, backspace, endfile*/
 | 
						||
typedef struct
 | 
						||
{	flag aerr;
 | 
						||
	ftnint aunit;
 | 
						||
} alist;
 | 
						||
 | 
						||
/* inquire */
 | 
						||
typedef struct
 | 
						||
{	flag inerr;
 | 
						||
	ftnint inunit;
 | 
						||
	char *infile;
 | 
						||
	ftnlen infilen;
 | 
						||
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						||
	ftnint	*inopen;
 | 
						||
	ftnint	*innum;
 | 
						||
	ftnint	*innamed;
 | 
						||
	char	*inname;
 | 
						||
	ftnlen	innamlen;
 | 
						||
	char	*inacc;
 | 
						||
	ftnlen	inacclen;
 | 
						||
	char	*inseq;
 | 
						||
	ftnlen	inseqlen;
 | 
						||
	char 	*indir;
 | 
						||
	ftnlen	indirlen;
 | 
						||
	char	*infmt;
 | 
						||
	ftnlen	infmtlen;
 | 
						||
	char	*inform;
 | 
						||
	ftnint	informlen;
 | 
						||
	char	*inunf;
 | 
						||
	ftnlen	inunflen;
 | 
						||
	ftnint	*inrecl;
 | 
						||
	ftnint	*innrec;
 | 
						||
	char	*inblank;
 | 
						||
	ftnlen	inblanklen;
 | 
						||
} inlist;
 | 
						||
 | 
						||
#define VOID void
 | 
						||
 | 
						||
union Multitype {	/* for multiple entry points */
 | 
						||
	integer1 g;
 | 
						||
	shortint h;
 | 
						||
	integer i;
 | 
						||
	/* longint j; */
 | 
						||
	real r;
 | 
						||
	doublereal d;
 | 
						||
	complex c;
 | 
						||
	doublecomplex z;
 | 
						||
	};
 | 
						||
 | 
						||
typedef union Multitype Multitype;
 | 
						||
 | 
						||
struct Vardesc {	/* for Namelist */
 | 
						||
	char *name;
 | 
						||
	char *addr;
 | 
						||
	ftnlen *dims;
 | 
						||
	int  type;
 | 
						||
	};
 | 
						||
typedef struct Vardesc Vardesc;
 | 
						||
 | 
						||
struct Namelist {
 | 
						||
	char *name;
 | 
						||
	Vardesc **vars;
 | 
						||
	int nvars;
 | 
						||
	};
 | 
						||
typedef struct Namelist Namelist;
 | 
						||
 | 
						||
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						||
#define dabs(x) (fabs(x))
 | 
						||
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						||
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						||
#define dmin(a,b) (f2cmin(a,b))
 | 
						||
#define dmax(a,b) (f2cmax(a,b))
 | 
						||
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						||
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						||
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						||
 | 
						||
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						||
#define c_abs(z) (cabsf(Cf(z)))
 | 
						||
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						||
#ifdef _MSC_VER
 | 
						||
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						||
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						||
#else
 | 
						||
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						||
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						||
#endif
 | 
						||
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						||
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						||
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						||
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						||
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						||
#define d_abs(x) (fabs(*(x)))
 | 
						||
#define d_acos(x) (acos(*(x)))
 | 
						||
#define d_asin(x) (asin(*(x)))
 | 
						||
#define d_atan(x) (atan(*(x)))
 | 
						||
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						||
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						||
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						||
#define d_cos(x) (cos(*(x)))
 | 
						||
#define d_cosh(x) (cosh(*(x)))
 | 
						||
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						||
#define d_exp(x) (exp(*(x)))
 | 
						||
#define d_imag(z) (cimag(Cd(z)))
 | 
						||
#define r_imag(z) (cimagf(Cf(z)))
 | 
						||
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						||
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						||
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						||
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						||
#define d_log(x) (log(*(x)))
 | 
						||
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						||
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						||
#define d_nint(x) u_nint(*(x))
 | 
						||
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						||
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						||
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						||
#define d_sin(x) (sin(*(x)))
 | 
						||
#define d_sinh(x) (sinh(*(x)))
 | 
						||
#define d_sqrt(x) (sqrt(*(x)))
 | 
						||
#define d_tan(x) (tan(*(x)))
 | 
						||
#define d_tanh(x) (tanh(*(x)))
 | 
						||
#define i_abs(x) abs(*(x))
 | 
						||
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						||
#define i_len(s, n) (n)
 | 
						||
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						||
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						||
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						||
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						||
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						||
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						||
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						||
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						||
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						||
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						||
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						||
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						||
#define sig_die(s, kill) { exit(1); }
 | 
						||
#define s_stop(s, n) {exit(0);}
 | 
						||
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						||
#define z_abs(z) (cabs(Cd(z)))
 | 
						||
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						||
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						||
#define myexit_() break;
 | 
						||
#define mycycle() continue;
 | 
						||
#define myceiling(w) {ceil(w)}
 | 
						||
#define myhuge(w) {HUGE_VAL}
 | 
						||
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						||
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						||
 | 
						||
/* procedure parameter types for -A and -C++ */
 | 
						||
 | 
						||
#define F2C_proc_par_types 1
 | 
						||
#ifdef __cplusplus
 | 
						||
typedef logical (*L_fp)(...);
 | 
						||
#else
 | 
						||
typedef logical (*L_fp)();
 | 
						||
#endif
 | 
						||
 | 
						||
static float spow_ui(float x, integer n) {
 | 
						||
	float pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
static double dpow_ui(double x, integer n) {
 | 
						||
	double pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
#ifdef _MSC_VER
 | 
						||
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						||
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						||
		if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						||
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	_Fcomplex p={pow.r, pow.i};
 | 
						||
	return p;
 | 
						||
}
 | 
						||
#else
 | 
						||
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						||
	_Complex float pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
#endif
 | 
						||
#ifdef _MSC_VER
 | 
						||
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						||
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						||
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						||
	return p;
 | 
						||
}
 | 
						||
#else
 | 
						||
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						||
	_Complex double pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
#endif
 | 
						||
static integer pow_ii(integer x, integer n) {
 | 
						||
	integer pow; unsigned long int u;
 | 
						||
	if (n <= 0) {
 | 
						||
		if (n == 0 || x == 1) pow = 1;
 | 
						||
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						||
		else n = -n;
 | 
						||
	}
 | 
						||
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						||
		u = n;
 | 
						||
		for(pow = 1; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						||
{
 | 
						||
	double m; integer i, mi;
 | 
						||
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						||
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						||
	return mi-s+1;
 | 
						||
}
 | 
						||
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						||
{
 | 
						||
	float m; integer i, mi;
 | 
						||
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						||
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						||
	return mi-s+1;
 | 
						||
}
 | 
						||
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex float zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#endif
 | 
						||
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex double zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#endif	
 | 
						||
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex float zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#endif
 | 
						||
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex double zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#endif
 | 
						||
/*  -- translated by f2c (version 20000121).
 | 
						||
   You must link the resulting object file with the libraries:
 | 
						||
	-lf2c -lm   (in that order)
 | 
						||
*/
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
/* > \brief \b CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matr
 | 
						||
ix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1. */
 | 
						||
 | 
						||
/*  =========== DOCUMENTATION =========== */
 | 
						||
 | 
						||
/* Online html documentation available at */
 | 
						||
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						||
 | 
						||
/* > \htmlonly */
 | 
						||
/* > Download CLAGTM + dependencies */
 | 
						||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clagtm.
 | 
						||
f"> */
 | 
						||
/* > [TGZ]</a> */
 | 
						||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clagtm.
 | 
						||
f"> */
 | 
						||
/* > [ZIP]</a> */
 | 
						||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clagtm.
 | 
						||
f"> */
 | 
						||
/* > [TXT]</a> */
 | 
						||
/* > \endhtmlonly */
 | 
						||
 | 
						||
/*  Definition: */
 | 
						||
/*  =========== */
 | 
						||
 | 
						||
/*       SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, */
 | 
						||
/*                          B, LDB ) */
 | 
						||
 | 
						||
/*       CHARACTER          TRANS */
 | 
						||
/*       INTEGER            LDB, LDX, N, NRHS */
 | 
						||
/*       REAL               ALPHA, BETA */
 | 
						||
/*       COMPLEX            B( LDB, * ), D( * ), DL( * ), DU( * ), */
 | 
						||
/*      $                   X( LDX, * ) */
 | 
						||
 | 
						||
 | 
						||
/* > \par Purpose: */
 | 
						||
/*  ============= */
 | 
						||
/* > */
 | 
						||
/* > \verbatim */
 | 
						||
/* > */
 | 
						||
/* > CLAGTM performs a matrix-vector product of the form */
 | 
						||
/* > */
 | 
						||
/* >    B := alpha * A * X + beta * B */
 | 
						||
/* > */
 | 
						||
/* > where A is a tridiagonal matrix of order N, B and X are N by NRHS */
 | 
						||
/* > matrices, and alpha and beta are real scalars, each of which may be */
 | 
						||
/* > 0., 1., or -1. */
 | 
						||
/* > \endverbatim */
 | 
						||
 | 
						||
/*  Arguments: */
 | 
						||
/*  ========== */
 | 
						||
 | 
						||
/* > \param[in] TRANS */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          TRANS is CHARACTER*1 */
 | 
						||
/* >          Specifies the operation applied to A. */
 | 
						||
/* >          = 'N':  No transpose, B := alpha * A * X + beta * B */
 | 
						||
/* >          = 'T':  Transpose,    B := alpha * A**T * X + beta * B */
 | 
						||
/* >          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] N */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          N is INTEGER */
 | 
						||
/* >          The order of the matrix A.  N >= 0. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] NRHS */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          NRHS is INTEGER */
 | 
						||
/* >          The number of right hand sides, i.e., the number of columns */
 | 
						||
/* >          of the matrices X and B. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] ALPHA */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          ALPHA is REAL */
 | 
						||
/* >          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise, */
 | 
						||
/* >          it is assumed to be 0. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] DL */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          DL is COMPLEX array, dimension (N-1) */
 | 
						||
/* >          The (n-1) sub-diagonal elements of T. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] D */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          D is COMPLEX array, dimension (N) */
 | 
						||
/* >          The diagonal elements of T. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] DU */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          DU is COMPLEX array, dimension (N-1) */
 | 
						||
/* >          The (n-1) super-diagonal elements of T. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] X */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          X is COMPLEX array, dimension (LDX,NRHS) */
 | 
						||
/* >          The N by NRHS matrix X. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] LDX */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          LDX is INTEGER */
 | 
						||
/* >          The leading dimension of the array X.  LDX >= f2cmax(N,1). */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] BETA */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          BETA is REAL */
 | 
						||
/* >          The scalar beta.  BETA must be 0., 1., or -1.; otherwise, */
 | 
						||
/* >          it is assumed to be 1. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in,out] B */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          B is COMPLEX array, dimension (LDB,NRHS) */
 | 
						||
/* >          On entry, the N by NRHS matrix B. */
 | 
						||
/* >          On exit, B is overwritten by the matrix expression */
 | 
						||
/* >          B := alpha * A * X + beta * B. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] LDB */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          LDB is INTEGER */
 | 
						||
/* >          The leading dimension of the array B.  LDB >= f2cmax(N,1). */
 | 
						||
/* > \endverbatim */
 | 
						||
 | 
						||
/*  Authors: */
 | 
						||
/*  ======== */
 | 
						||
 | 
						||
/* > \author Univ. of Tennessee */
 | 
						||
/* > \author Univ. of California Berkeley */
 | 
						||
/* > \author Univ. of Colorado Denver */
 | 
						||
/* > \author NAG Ltd. */
 | 
						||
 | 
						||
/* > \date December 2016 */
 | 
						||
 | 
						||
/* > \ingroup complexOTHERauxiliary */
 | 
						||
 | 
						||
/*  ===================================================================== */
 | 
						||
/* Subroutine */ int clagtm_(char *trans, integer *n, integer *nrhs, real *
 | 
						||
	alpha, complex *dl, complex *d__, complex *du, complex *x, integer *
 | 
						||
	ldx, real *beta, complex *b, integer *ldb)
 | 
						||
{
 | 
						||
    /* System generated locals */
 | 
						||
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, 
 | 
						||
	    i__6, i__7, i__8, i__9, i__10;
 | 
						||
    complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9;
 | 
						||
 | 
						||
    /* Local variables */
 | 
						||
    integer i__, j;
 | 
						||
    extern logical lsame_(char *, char *);
 | 
						||
 | 
						||
 | 
						||
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						||
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						||
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						||
/*     December 2016 */
 | 
						||
 | 
						||
 | 
						||
/*  ===================================================================== */
 | 
						||
 | 
						||
 | 
						||
    /* Parameter adjustments */
 | 
						||
    --dl;
 | 
						||
    --d__;
 | 
						||
    --du;
 | 
						||
    x_dim1 = *ldx;
 | 
						||
    x_offset = 1 + x_dim1 * 1;
 | 
						||
    x -= x_offset;
 | 
						||
    b_dim1 = *ldb;
 | 
						||
    b_offset = 1 + b_dim1 * 1;
 | 
						||
    b -= b_offset;
 | 
						||
 | 
						||
    /* Function Body */
 | 
						||
    if (*n == 0) {
 | 
						||
	return 0;
 | 
						||
    }
 | 
						||
 | 
						||
/*     Multiply B by BETA if BETA.NE.1. */
 | 
						||
 | 
						||
    if (*beta == 0.f) {
 | 
						||
	i__1 = *nrhs;
 | 
						||
	for (j = 1; j <= i__1; ++j) {
 | 
						||
	    i__2 = *n;
 | 
						||
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						||
		i__3 = i__ + j * b_dim1;
 | 
						||
		b[i__3].r = 0.f, b[i__3].i = 0.f;
 | 
						||
/* L10: */
 | 
						||
	    }
 | 
						||
/* L20: */
 | 
						||
	}
 | 
						||
    } else if (*beta == -1.f) {
 | 
						||
	i__1 = *nrhs;
 | 
						||
	for (j = 1; j <= i__1; ++j) {
 | 
						||
	    i__2 = *n;
 | 
						||
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						||
		i__3 = i__ + j * b_dim1;
 | 
						||
		i__4 = i__ + j * b_dim1;
 | 
						||
		q__1.r = -b[i__4].r, q__1.i = -b[i__4].i;
 | 
						||
		b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L30: */
 | 
						||
	    }
 | 
						||
/* L40: */
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
    if (*alpha == 1.f) {
 | 
						||
	if (lsame_(trans, "N")) {
 | 
						||
 | 
						||
/*           Compute B := B + A*X */
 | 
						||
 | 
						||
	    i__1 = *nrhs;
 | 
						||
	    for (j = 1; j <= i__1; ++j) {
 | 
						||
		if (*n == 1) {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = b[i__3].r + q__2.r, q__1.i = b[i__3].i + q__2.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		} else {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
 | 
						||
		    i__5 = j * x_dim1 + 2;
 | 
						||
		    q__4.r = du[1].r * x[i__5].r - du[1].i * x[i__5].i, 
 | 
						||
			    q__4.i = du[1].r * x[i__5].i + du[1].i * x[i__5]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n + j * b_dim1;
 | 
						||
		    i__3 = *n + j * b_dim1;
 | 
						||
		    i__4 = *n - 1;
 | 
						||
		    i__5 = *n - 1 + j * x_dim1;
 | 
						||
		    q__3.r = dl[i__4].r * x[i__5].r - dl[i__4].i * x[i__5].i, 
 | 
						||
			    q__3.i = dl[i__4].r * x[i__5].i + dl[i__4].i * x[
 | 
						||
			    i__5].r;
 | 
						||
		    q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
 | 
						||
		    i__6 = *n;
 | 
						||
		    i__7 = *n + j * x_dim1;
 | 
						||
		    q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
 | 
						||
			    .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
 | 
						||
			    .i * x[i__7].r;
 | 
						||
		    q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n - 1;
 | 
						||
		    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						||
			i__3 = i__ + j * b_dim1;
 | 
						||
			i__4 = i__ + j * b_dim1;
 | 
						||
			i__5 = i__ - 1;
 | 
						||
			i__6 = i__ - 1 + j * x_dim1;
 | 
						||
			q__4.r = dl[i__5].r * x[i__6].r - dl[i__5].i * x[i__6]
 | 
						||
				.i, q__4.i = dl[i__5].r * x[i__6].i + dl[i__5]
 | 
						||
				.i * x[i__6].r;
 | 
						||
			q__3.r = b[i__4].r + q__4.r, q__3.i = b[i__4].i + 
 | 
						||
				q__4.i;
 | 
						||
			i__7 = i__;
 | 
						||
			i__8 = i__ + j * x_dim1;
 | 
						||
			q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
 | 
						||
				i__8].i, q__5.i = d__[i__7].r * x[i__8].i + 
 | 
						||
				d__[i__7].i * x[i__8].r;
 | 
						||
			q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
 | 
						||
			i__9 = i__;
 | 
						||
			i__10 = i__ + 1 + j * x_dim1;
 | 
						||
			q__6.r = du[i__9].r * x[i__10].r - du[i__9].i * x[
 | 
						||
				i__10].i, q__6.i = du[i__9].r * x[i__10].i + 
 | 
						||
				du[i__9].i * x[i__10].r;
 | 
						||
			q__1.r = q__2.r + q__6.r, q__1.i = q__2.i + q__6.i;
 | 
						||
			b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L50: */
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/* L60: */
 | 
						||
	    }
 | 
						||
	} else if (lsame_(trans, "T")) {
 | 
						||
 | 
						||
/*           Compute B := B + A**T * X */
 | 
						||
 | 
						||
	    i__1 = *nrhs;
 | 
						||
	    for (j = 1; j <= i__1; ++j) {
 | 
						||
		if (*n == 1) {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = b[i__3].r + q__2.r, q__1.i = b[i__3].i + q__2.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		} else {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
 | 
						||
		    i__5 = j * x_dim1 + 2;
 | 
						||
		    q__4.r = dl[1].r * x[i__5].r - dl[1].i * x[i__5].i, 
 | 
						||
			    q__4.i = dl[1].r * x[i__5].i + dl[1].i * x[i__5]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n + j * b_dim1;
 | 
						||
		    i__3 = *n + j * b_dim1;
 | 
						||
		    i__4 = *n - 1;
 | 
						||
		    i__5 = *n - 1 + j * x_dim1;
 | 
						||
		    q__3.r = du[i__4].r * x[i__5].r - du[i__4].i * x[i__5].i, 
 | 
						||
			    q__3.i = du[i__4].r * x[i__5].i + du[i__4].i * x[
 | 
						||
			    i__5].r;
 | 
						||
		    q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
 | 
						||
		    i__6 = *n;
 | 
						||
		    i__7 = *n + j * x_dim1;
 | 
						||
		    q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
 | 
						||
			    .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
 | 
						||
			    .i * x[i__7].r;
 | 
						||
		    q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n - 1;
 | 
						||
		    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						||
			i__3 = i__ + j * b_dim1;
 | 
						||
			i__4 = i__ + j * b_dim1;
 | 
						||
			i__5 = i__ - 1;
 | 
						||
			i__6 = i__ - 1 + j * x_dim1;
 | 
						||
			q__4.r = du[i__5].r * x[i__6].r - du[i__5].i * x[i__6]
 | 
						||
				.i, q__4.i = du[i__5].r * x[i__6].i + du[i__5]
 | 
						||
				.i * x[i__6].r;
 | 
						||
			q__3.r = b[i__4].r + q__4.r, q__3.i = b[i__4].i + 
 | 
						||
				q__4.i;
 | 
						||
			i__7 = i__;
 | 
						||
			i__8 = i__ + j * x_dim1;
 | 
						||
			q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
 | 
						||
				i__8].i, q__5.i = d__[i__7].r * x[i__8].i + 
 | 
						||
				d__[i__7].i * x[i__8].r;
 | 
						||
			q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
 | 
						||
			i__9 = i__;
 | 
						||
			i__10 = i__ + 1 + j * x_dim1;
 | 
						||
			q__6.r = dl[i__9].r * x[i__10].r - dl[i__9].i * x[
 | 
						||
				i__10].i, q__6.i = dl[i__9].r * x[i__10].i + 
 | 
						||
				dl[i__9].i * x[i__10].r;
 | 
						||
			q__1.r = q__2.r + q__6.r, q__1.i = q__2.i + q__6.i;
 | 
						||
			b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L70: */
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/* L80: */
 | 
						||
	    }
 | 
						||
	} else if (lsame_(trans, "C")) {
 | 
						||
 | 
						||
/*           Compute B := B + A**H * X */
 | 
						||
 | 
						||
	    i__1 = *nrhs;
 | 
						||
	    for (j = 1; j <= i__1; ++j) {
 | 
						||
		if (*n == 1) {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    r_cnjg(&q__3, &d__[1]);
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
 | 
						||
			     q__3.r * x[i__4].i + q__3.i * x[i__4].r;
 | 
						||
		    q__1.r = b[i__3].r + q__2.r, q__1.i = b[i__3].i + q__2.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		} else {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    r_cnjg(&q__4, &d__[1]);
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
 | 
						||
			     q__4.r * x[i__4].i + q__4.i * x[i__4].r;
 | 
						||
		    q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
 | 
						||
		    r_cnjg(&q__6, &dl[1]);
 | 
						||
		    i__5 = j * x_dim1 + 2;
 | 
						||
		    q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
 | 
						||
			     q__6.r * x[i__5].i + q__6.i * x[i__5].r;
 | 
						||
		    q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n + j * b_dim1;
 | 
						||
		    i__3 = *n + j * b_dim1;
 | 
						||
		    r_cnjg(&q__4, &du[*n - 1]);
 | 
						||
		    i__4 = *n - 1 + j * x_dim1;
 | 
						||
		    q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
 | 
						||
			     q__4.r * x[i__4].i + q__4.i * x[i__4].r;
 | 
						||
		    q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
 | 
						||
		    r_cnjg(&q__6, &d__[*n]);
 | 
						||
		    i__5 = *n + j * x_dim1;
 | 
						||
		    q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
 | 
						||
			     q__6.r * x[i__5].i + q__6.i * x[i__5].r;
 | 
						||
		    q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n - 1;
 | 
						||
		    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						||
			i__3 = i__ + j * b_dim1;
 | 
						||
			i__4 = i__ + j * b_dim1;
 | 
						||
			r_cnjg(&q__5, &du[i__ - 1]);
 | 
						||
			i__5 = i__ - 1 + j * x_dim1;
 | 
						||
			q__4.r = q__5.r * x[i__5].r - q__5.i * x[i__5].i, 
 | 
						||
				q__4.i = q__5.r * x[i__5].i + q__5.i * x[i__5]
 | 
						||
				.r;
 | 
						||
			q__3.r = b[i__4].r + q__4.r, q__3.i = b[i__4].i + 
 | 
						||
				q__4.i;
 | 
						||
			r_cnjg(&q__7, &d__[i__]);
 | 
						||
			i__6 = i__ + j * x_dim1;
 | 
						||
			q__6.r = q__7.r * x[i__6].r - q__7.i * x[i__6].i, 
 | 
						||
				q__6.i = q__7.r * x[i__6].i + q__7.i * x[i__6]
 | 
						||
				.r;
 | 
						||
			q__2.r = q__3.r + q__6.r, q__2.i = q__3.i + q__6.i;
 | 
						||
			r_cnjg(&q__9, &dl[i__]);
 | 
						||
			i__7 = i__ + 1 + j * x_dim1;
 | 
						||
			q__8.r = q__9.r * x[i__7].r - q__9.i * x[i__7].i, 
 | 
						||
				q__8.i = q__9.r * x[i__7].i + q__9.i * x[i__7]
 | 
						||
				.r;
 | 
						||
			q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
 | 
						||
			b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L90: */
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/* L100: */
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    } else if (*alpha == -1.f) {
 | 
						||
	if (lsame_(trans, "N")) {
 | 
						||
 | 
						||
/*           Compute B := B - A*X */
 | 
						||
 | 
						||
	    i__1 = *nrhs;
 | 
						||
	    for (j = 1; j <= i__1; ++j) {
 | 
						||
		if (*n == 1) {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		} else {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
 | 
						||
		    i__5 = j * x_dim1 + 2;
 | 
						||
		    q__4.r = du[1].r * x[i__5].r - du[1].i * x[i__5].i, 
 | 
						||
			    q__4.i = du[1].r * x[i__5].i + du[1].i * x[i__5]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n + j * b_dim1;
 | 
						||
		    i__3 = *n + j * b_dim1;
 | 
						||
		    i__4 = *n - 1;
 | 
						||
		    i__5 = *n - 1 + j * x_dim1;
 | 
						||
		    q__3.r = dl[i__4].r * x[i__5].r - dl[i__4].i * x[i__5].i, 
 | 
						||
			    q__3.i = dl[i__4].r * x[i__5].i + dl[i__4].i * x[
 | 
						||
			    i__5].r;
 | 
						||
		    q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
 | 
						||
		    i__6 = *n;
 | 
						||
		    i__7 = *n + j * x_dim1;
 | 
						||
		    q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
 | 
						||
			    .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
 | 
						||
			    .i * x[i__7].r;
 | 
						||
		    q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n - 1;
 | 
						||
		    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						||
			i__3 = i__ + j * b_dim1;
 | 
						||
			i__4 = i__ + j * b_dim1;
 | 
						||
			i__5 = i__ - 1;
 | 
						||
			i__6 = i__ - 1 + j * x_dim1;
 | 
						||
			q__4.r = dl[i__5].r * x[i__6].r - dl[i__5].i * x[i__6]
 | 
						||
				.i, q__4.i = dl[i__5].r * x[i__6].i + dl[i__5]
 | 
						||
				.i * x[i__6].r;
 | 
						||
			q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i - 
 | 
						||
				q__4.i;
 | 
						||
			i__7 = i__;
 | 
						||
			i__8 = i__ + j * x_dim1;
 | 
						||
			q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
 | 
						||
				i__8].i, q__5.i = d__[i__7].r * x[i__8].i + 
 | 
						||
				d__[i__7].i * x[i__8].r;
 | 
						||
			q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
 | 
						||
			i__9 = i__;
 | 
						||
			i__10 = i__ + 1 + j * x_dim1;
 | 
						||
			q__6.r = du[i__9].r * x[i__10].r - du[i__9].i * x[
 | 
						||
				i__10].i, q__6.i = du[i__9].r * x[i__10].i + 
 | 
						||
				du[i__9].i * x[i__10].r;
 | 
						||
			q__1.r = q__2.r - q__6.r, q__1.i = q__2.i - q__6.i;
 | 
						||
			b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L110: */
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/* L120: */
 | 
						||
	    }
 | 
						||
	} else if (lsame_(trans, "T")) {
 | 
						||
 | 
						||
/*           Compute B := B - A**T*X */
 | 
						||
 | 
						||
	    i__1 = *nrhs;
 | 
						||
	    for (j = 1; j <= i__1; ++j) {
 | 
						||
		if (*n == 1) {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		} else {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i, 
 | 
						||
			    q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
 | 
						||
			    .r;
 | 
						||
		    q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
 | 
						||
		    i__5 = j * x_dim1 + 2;
 | 
						||
		    q__4.r = dl[1].r * x[i__5].r - dl[1].i * x[i__5].i, 
 | 
						||
			    q__4.i = dl[1].r * x[i__5].i + dl[1].i * x[i__5]
 | 
						||
			    .r;
 | 
						||
		    q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n + j * b_dim1;
 | 
						||
		    i__3 = *n + j * b_dim1;
 | 
						||
		    i__4 = *n - 1;
 | 
						||
		    i__5 = *n - 1 + j * x_dim1;
 | 
						||
		    q__3.r = du[i__4].r * x[i__5].r - du[i__4].i * x[i__5].i, 
 | 
						||
			    q__3.i = du[i__4].r * x[i__5].i + du[i__4].i * x[
 | 
						||
			    i__5].r;
 | 
						||
		    q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
 | 
						||
		    i__6 = *n;
 | 
						||
		    i__7 = *n + j * x_dim1;
 | 
						||
		    q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
 | 
						||
			    .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
 | 
						||
			    .i * x[i__7].r;
 | 
						||
		    q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n - 1;
 | 
						||
		    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						||
			i__3 = i__ + j * b_dim1;
 | 
						||
			i__4 = i__ + j * b_dim1;
 | 
						||
			i__5 = i__ - 1;
 | 
						||
			i__6 = i__ - 1 + j * x_dim1;
 | 
						||
			q__4.r = du[i__5].r * x[i__6].r - du[i__5].i * x[i__6]
 | 
						||
				.i, q__4.i = du[i__5].r * x[i__6].i + du[i__5]
 | 
						||
				.i * x[i__6].r;
 | 
						||
			q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i - 
 | 
						||
				q__4.i;
 | 
						||
			i__7 = i__;
 | 
						||
			i__8 = i__ + j * x_dim1;
 | 
						||
			q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
 | 
						||
				i__8].i, q__5.i = d__[i__7].r * x[i__8].i + 
 | 
						||
				d__[i__7].i * x[i__8].r;
 | 
						||
			q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
 | 
						||
			i__9 = i__;
 | 
						||
			i__10 = i__ + 1 + j * x_dim1;
 | 
						||
			q__6.r = dl[i__9].r * x[i__10].r - dl[i__9].i * x[
 | 
						||
				i__10].i, q__6.i = dl[i__9].r * x[i__10].i + 
 | 
						||
				dl[i__9].i * x[i__10].r;
 | 
						||
			q__1.r = q__2.r - q__6.r, q__1.i = q__2.i - q__6.i;
 | 
						||
			b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L130: */
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/* L140: */
 | 
						||
	    }
 | 
						||
	} else if (lsame_(trans, "C")) {
 | 
						||
 | 
						||
/*           Compute B := B - A**H*X */
 | 
						||
 | 
						||
	    i__1 = *nrhs;
 | 
						||
	    for (j = 1; j <= i__1; ++j) {
 | 
						||
		if (*n == 1) {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    r_cnjg(&q__3, &d__[1]);
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
 | 
						||
			     q__3.r * x[i__4].i + q__3.i * x[i__4].r;
 | 
						||
		    q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		} else {
 | 
						||
		    i__2 = j * b_dim1 + 1;
 | 
						||
		    i__3 = j * b_dim1 + 1;
 | 
						||
		    r_cnjg(&q__4, &d__[1]);
 | 
						||
		    i__4 = j * x_dim1 + 1;
 | 
						||
		    q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
 | 
						||
			     q__4.r * x[i__4].i + q__4.i * x[i__4].r;
 | 
						||
		    q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
 | 
						||
		    r_cnjg(&q__6, &dl[1]);
 | 
						||
		    i__5 = j * x_dim1 + 2;
 | 
						||
		    q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
 | 
						||
			     q__6.r * x[i__5].i + q__6.i * x[i__5].r;
 | 
						||
		    q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n + j * b_dim1;
 | 
						||
		    i__3 = *n + j * b_dim1;
 | 
						||
		    r_cnjg(&q__4, &du[*n - 1]);
 | 
						||
		    i__4 = *n - 1 + j * x_dim1;
 | 
						||
		    q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
 | 
						||
			     q__4.r * x[i__4].i + q__4.i * x[i__4].r;
 | 
						||
		    q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
 | 
						||
		    r_cnjg(&q__6, &d__[*n]);
 | 
						||
		    i__5 = *n + j * x_dim1;
 | 
						||
		    q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
 | 
						||
			     q__6.r * x[i__5].i + q__6.i * x[i__5].r;
 | 
						||
		    q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i;
 | 
						||
		    b[i__2].r = q__1.r, b[i__2].i = q__1.i;
 | 
						||
		    i__2 = *n - 1;
 | 
						||
		    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						||
			i__3 = i__ + j * b_dim1;
 | 
						||
			i__4 = i__ + j * b_dim1;
 | 
						||
			r_cnjg(&q__5, &du[i__ - 1]);
 | 
						||
			i__5 = i__ - 1 + j * x_dim1;
 | 
						||
			q__4.r = q__5.r * x[i__5].r - q__5.i * x[i__5].i, 
 | 
						||
				q__4.i = q__5.r * x[i__5].i + q__5.i * x[i__5]
 | 
						||
				.r;
 | 
						||
			q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i - 
 | 
						||
				q__4.i;
 | 
						||
			r_cnjg(&q__7, &d__[i__]);
 | 
						||
			i__6 = i__ + j * x_dim1;
 | 
						||
			q__6.r = q__7.r * x[i__6].r - q__7.i * x[i__6].i, 
 | 
						||
				q__6.i = q__7.r * x[i__6].i + q__7.i * x[i__6]
 | 
						||
				.r;
 | 
						||
			q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
 | 
						||
			r_cnjg(&q__9, &dl[i__]);
 | 
						||
			i__7 = i__ + 1 + j * x_dim1;
 | 
						||
			q__8.r = q__9.r * x[i__7].r - q__9.i * x[i__7].i, 
 | 
						||
				q__8.i = q__9.r * x[i__7].i + q__9.i * x[i__7]
 | 
						||
				.r;
 | 
						||
			q__1.r = q__2.r - q__8.r, q__1.i = q__2.i - q__8.i;
 | 
						||
			b[i__3].r = q__1.r, b[i__3].i = q__1.i;
 | 
						||
/* L150: */
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/* L160: */
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
    return 0;
 | 
						||
 | 
						||
/*     End of CLAGTM */
 | 
						||
 | 
						||
} /* clagtm_ */
 | 
						||
 |