259 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGTT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
 | 
						|
*                          LDWORK, RWORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDWORK, N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
 | 
						|
*      $                   DU2( * ), DUF( * ), WORK( LDWORK, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGTT01 reconstructs a tridiagonal matrix A from its LU factorization
 | 
						|
*> and computes the residual
 | 
						|
*>    norm(L*U - A) / ( norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          The (n-1) sub-diagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX*16 array, dimension (N)
 | 
						|
*>          The diagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          The (n-1) super-diagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DLF
 | 
						|
*> \verbatim
 | 
						|
*>          DLF is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          The (n-1) multipliers that define the matrix L from the
 | 
						|
*>          LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DF
 | 
						|
*> \verbatim
 | 
						|
*>          DF is COMPLEX*16 array, dimension (N)
 | 
						|
*>          The n diagonal elements of the upper triangular matrix U from
 | 
						|
*>          the LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DUF
 | 
						|
*> \verbatim
 | 
						|
*>          DUF is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          The (n-1) elements of the first super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU2
 | 
						|
*> \verbatim
 | 
						|
*>          DU2 is COMPLEX*16 array, dimension (N-2)
 | 
						|
*>          The (n-2) elements of the second super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | 
						|
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | 
						|
*>          required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (LDWORK,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LDWORK is INTEGER
 | 
						|
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          The scaled residual:  norm(L*U - A) / (norm(A) * EPS)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
 | 
						|
     $                   LDWORK, RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDWORK, N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
 | 
						|
     $                   DU2( * ), DUF( * ), WORK( LDWORK, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IP, J, LASTJ
 | 
						|
      DOUBLE PRECISION   ANORM, EPS
 | 
						|
      COMPLEX*16         LI
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGT, ZLANHS
 | 
						|
      EXTERNAL           DLAMCH, ZLANGT, ZLANHS
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MIN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZAXPY, ZSWAP
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Copy the matrix U to WORK.
 | 
						|
*
 | 
						|
      DO 20 J = 1, N
 | 
						|
         DO 10 I = 1, N
 | 
						|
            WORK( I, J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
   20 CONTINUE
 | 
						|
      DO 30 I = 1, N
 | 
						|
         IF( I.EQ.1 ) THEN
 | 
						|
            WORK( I, I ) = DF( I )
 | 
						|
            IF( N.GE.2 )
 | 
						|
     $         WORK( I, I+1 ) = DUF( I )
 | 
						|
            IF( N.GE.3 )
 | 
						|
     $         WORK( I, I+2 ) = DU2( I )
 | 
						|
         ELSE IF( I.EQ.N ) THEN
 | 
						|
            WORK( I, I ) = DF( I )
 | 
						|
         ELSE
 | 
						|
            WORK( I, I ) = DF( I )
 | 
						|
            WORK( I, I+1 ) = DUF( I )
 | 
						|
            IF( I.LT.N-1 )
 | 
						|
     $         WORK( I, I+2 ) = DU2( I )
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Multiply on the left by L.
 | 
						|
*
 | 
						|
      LASTJ = N
 | 
						|
      DO 40 I = N - 1, 1, -1
 | 
						|
         LI = DLF( I )
 | 
						|
         CALL ZAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
 | 
						|
     $               WORK( I+1, I ), LDWORK )
 | 
						|
         IP = IPIV( I )
 | 
						|
         IF( IP.EQ.I ) THEN
 | 
						|
            LASTJ = MIN( I+2, N )
 | 
						|
         ELSE
 | 
						|
            CALL ZSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
 | 
						|
     $                  LDWORK )
 | 
						|
         END IF
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Subtract the matrix A.
 | 
						|
*
 | 
						|
      WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
 | 
						|
      IF( N.GT.1 ) THEN
 | 
						|
         WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
 | 
						|
         WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
 | 
						|
         WORK( N, N ) = WORK( N, N ) - D( N )
 | 
						|
         DO 50 I = 2, N - 1
 | 
						|
            WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
 | 
						|
            WORK( I, I ) = WORK( I, I ) - D( I )
 | 
						|
            WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the 1-norm of the tridiagonal matrix A.
 | 
						|
*
 | 
						|
      ANORM = ZLANGT( '1', N, DL, D, DU )
 | 
						|
*
 | 
						|
*     Compute the 1-norm of WORK, which is only guaranteed to be
 | 
						|
*     upper Hessenberg.
 | 
						|
*
 | 
						|
      RESID = ZLANHS( '1', N, WORK, LDWORK, RWORK )
 | 
						|
*
 | 
						|
*     Compute norm(L*U - A) / (norm(A) * EPS)
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( RESID / ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGTT01
 | 
						|
*
 | 
						|
      END
 |