332 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSYEQUB
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSYEQUB + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyequb.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyequb.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyequb.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       REAL               AMAX, SCOND
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), S( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSYEQUB computes row and column scalings intended to equilibrate a
 | 
						|
*> symmetric matrix A (with respect to the Euclidean norm) and reduce
 | 
						|
*> its condition number. The scale factors S are computed by the BIN
 | 
						|
*> algorithm (see references) so that the scaled matrix B with elements
 | 
						|
*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
 | 
						|
*> the smallest possible condition number over all possible diagonal
 | 
						|
*> scalings.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The N-by-N symmetric matrix whose scaling factors are to be
 | 
						|
*>          computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, S contains the scale factors for A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCOND
 | 
						|
*> \verbatim
 | 
						|
*>          SCOND is REAL
 | 
						|
*>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | 
						|
*>          the largest S(i). If SCOND >= 0.1 and AMAX is neither too
 | 
						|
*>          large nor too small, it is not worth scaling by S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AMAX
 | 
						|
*> \verbatim
 | 
						|
*>          AMAX is REAL
 | 
						|
*>          Largest absolute value of any matrix element. If AMAX is
 | 
						|
*>          very close to overflow or very close to underflow, the
 | 
						|
*>          matrix should be scaled.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realSYcomputational
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>  Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
 | 
						|
*>  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
 | 
						|
*>  DOI 10.1023/B:NUMA.0000016606.32820.69 \n
 | 
						|
*>  Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
      REAL               AMAX, SCOND
 | 
						|
      CHARACTER          UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), S( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
 | 
						|
      INTEGER            MAX_ITER
 | 
						|
      PARAMETER          ( MAX_ITER = 100 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, ITER
 | 
						|
      REAL               AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
 | 
						|
     $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
 | 
						|
      LOGICAL            UP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLASSQ, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF ( N .LT. 0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF ( INFO .NE. 0 ) THEN
 | 
						|
         CALL XERBLA( 'SSYEQUB', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
 | 
						|
      UP = LSAME( UPLO, 'U' )
 | 
						|
      AMAX = ZERO
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ( N .EQ. 0 ) THEN
 | 
						|
         SCOND = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
 | 
						|
      DO I = 1, N
 | 
						|
         S( I ) = ZERO
 | 
						|
      END DO
 | 
						|
 | 
						|
      AMAX = ZERO
 | 
						|
      IF ( UP ) THEN
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = 1, J-1
 | 
						|
               S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
 | 
						|
               S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
 | 
						|
               AMAX = MAX( AMAX, ABS( A( I, J ) ) )
 | 
						|
            END DO
 | 
						|
            S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
 | 
						|
            AMAX = MAX( AMAX, ABS( A( J, J ) ) )
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, N
 | 
						|
            S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
 | 
						|
            AMAX = MAX( AMAX, ABS( A( J, J ) ) )
 | 
						|
            DO I = J+1, N
 | 
						|
               S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
 | 
						|
               S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
 | 
						|
               AMAX = MAX( AMAX, ABS( A( I, J ) ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      DO J = 1, N
 | 
						|
         S( J ) = 1.0E0 / S( J )
 | 
						|
      END DO
 | 
						|
 | 
						|
      TOL = ONE / SQRT( 2.0E0 * N )
 | 
						|
 | 
						|
      DO ITER = 1, MAX_ITER
 | 
						|
         SCALE = 0.0E0
 | 
						|
         SUMSQ = 0.0E0
 | 
						|
*        beta = |A|s
 | 
						|
         DO I = 1, N
 | 
						|
            WORK( I ) = ZERO
 | 
						|
         END DO
 | 
						|
         IF ( UP ) THEN
 | 
						|
            DO J = 1, N
 | 
						|
               DO I = 1, J-1
 | 
						|
                  WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
 | 
						|
                  WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
 | 
						|
               END DO
 | 
						|
               WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
 | 
						|
            END DO
 | 
						|
         ELSE
 | 
						|
            DO J = 1, N
 | 
						|
               WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
 | 
						|
               DO I = J+1, N
 | 
						|
                  WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
 | 
						|
                  WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
 | 
						|
               END DO
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
 | 
						|
*        avg = s^T beta / n
 | 
						|
         AVG = 0.0E0
 | 
						|
         DO I = 1, N
 | 
						|
            AVG = AVG + S( I )*WORK( I )
 | 
						|
         END DO
 | 
						|
         AVG = AVG / N
 | 
						|
 | 
						|
         STD = 0.0E0
 | 
						|
         DO I = N+1, 2*N
 | 
						|
            WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
 | 
						|
         END DO
 | 
						|
         CALL SLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
 | 
						|
         STD = SCALE * SQRT( SUMSQ / N )
 | 
						|
 | 
						|
         IF ( STD .LT. TOL * AVG ) GOTO 999
 | 
						|
 | 
						|
         DO I = 1, N
 | 
						|
            T = ABS( A( I, I ) )
 | 
						|
            SI = S( I )
 | 
						|
            C2 = ( N-1 ) * T
 | 
						|
            C1 = ( N-2 ) * ( WORK( I ) - T*SI )
 | 
						|
            C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
 | 
						|
            D = C1*C1 - 4*C0*C2
 | 
						|
 | 
						|
            IF ( D .LE. 0 ) THEN
 | 
						|
               INFO = -1
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            SI = -2*C0 / ( C1 + SQRT( D ) )
 | 
						|
 | 
						|
            D = SI - S( I )
 | 
						|
            U = ZERO
 | 
						|
            IF ( UP ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  T = ABS( A( J, I ) )
 | 
						|
                  U = U + S( J )*T
 | 
						|
                  WORK( J ) = WORK( J ) + D*T
 | 
						|
               END DO
 | 
						|
               DO J = I+1,N
 | 
						|
                  T = ABS( A( I, J ) )
 | 
						|
                  U = U + S( J )*T
 | 
						|
                  WORK( J ) = WORK( J ) + D*T
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, I
 | 
						|
                  T = ABS( A( I, J ) )
 | 
						|
                  U = U + S( J )*T
 | 
						|
                  WORK( J ) = WORK( J ) + D*T
 | 
						|
               END DO
 | 
						|
               DO J = I+1,N
 | 
						|
                  T = ABS( A( J, I ) )
 | 
						|
                  U = U + S( J )*T
 | 
						|
                  WORK( J ) = WORK( J ) + D*T
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
 | 
						|
            AVG = AVG + ( U + WORK( I ) ) * D / N
 | 
						|
            S( I ) = SI
 | 
						|
         END DO
 | 
						|
      END DO
 | 
						|
 | 
						|
 999  CONTINUE
 | 
						|
 | 
						|
      SMLNUM = SLAMCH( 'SAFEMIN' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      SMIN = BIGNUM
 | 
						|
      SMAX = ZERO
 | 
						|
      T = ONE / SQRT( AVG )
 | 
						|
      BASE = SLAMCH( 'B' )
 | 
						|
      U = ONE / LOG( BASE )
 | 
						|
      DO I = 1, N
 | 
						|
         S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
 | 
						|
         SMIN = MIN( SMIN, S( I ) )
 | 
						|
         SMAX = MAX( SMAX, S( I ) )
 | 
						|
      END DO
 | 
						|
      SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
 | 
						|
*
 | 
						|
      END
 |