236 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAEV2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaev2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaev2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaev2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               A, B, C, CS1, RT1, RT2, SN1
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
 | 
						|
*>    [  A   B  ]
 | 
						|
*>    [  B   C  ].
 | 
						|
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 | 
						|
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 | 
						|
*> eigenvector for RT1, giving the decomposition
 | 
						|
*>
 | 
						|
*>    [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
 | 
						|
*>    [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL
 | 
						|
*>          The (1,1) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL
 | 
						|
*>          The (1,2) element and the conjugate of the (2,1) element of
 | 
						|
*>          the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL
 | 
						|
*>          The (2,2) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT1
 | 
						|
*> \verbatim
 | 
						|
*>          RT1 is REAL
 | 
						|
*>          The eigenvalue of larger absolute value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT2
 | 
						|
*> \verbatim
 | 
						|
*>          RT2 is REAL
 | 
						|
*>          The eigenvalue of smaller absolute value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CS1
 | 
						|
*> \verbatim
 | 
						|
*>          CS1 is REAL
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SN1
 | 
						|
*> \verbatim
 | 
						|
*>          SN1 is REAL
 | 
						|
*>          The vector (CS1, SN1) is a unit right eigenvector for RT1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  RT1 is accurate to a few ulps barring over/underflow.
 | 
						|
*>
 | 
						|
*>  RT2 may be inaccurate if there is massive cancellation in the
 | 
						|
*>  determinant A*C-B*B; higher precision or correctly rounded or
 | 
						|
*>  correctly truncated arithmetic would be needed to compute RT2
 | 
						|
*>  accurately in all cases.
 | 
						|
*>
 | 
						|
*>  CS1 and SN1 are accurate to a few ulps barring over/underflow.
 | 
						|
*>
 | 
						|
*>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
 | 
						|
*>  Underflow is harmless if the input data is 0 or exceeds
 | 
						|
*>     underflow_threshold / macheps.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               A, B, C, CS1, RT1, RT2, SN1
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E0 )
 | 
						|
      REAL               TWO
 | 
						|
      PARAMETER          ( TWO = 2.0E0 )
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E0 )
 | 
						|
      REAL               HALF
 | 
						|
      PARAMETER          ( HALF = 0.5E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            SGN1, SGN2
 | 
						|
      REAL               AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
 | 
						|
     $                   TB, TN
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Compute the eigenvalues
 | 
						|
*
 | 
						|
      SM = A + C
 | 
						|
      DF = A - C
 | 
						|
      ADF = ABS( DF )
 | 
						|
      TB = B + B
 | 
						|
      AB = ABS( TB )
 | 
						|
      IF( ABS( A ).GT.ABS( C ) ) THEN
 | 
						|
         ACMX = A
 | 
						|
         ACMN = C
 | 
						|
      ELSE
 | 
						|
         ACMX = C
 | 
						|
         ACMN = A
 | 
						|
      END IF
 | 
						|
      IF( ADF.GT.AB ) THEN
 | 
						|
         RT = ADF*SQRT( ONE+( AB / ADF )**2 )
 | 
						|
      ELSE IF( ADF.LT.AB ) THEN
 | 
						|
         RT = AB*SQRT( ONE+( ADF / AB )**2 )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Includes case AB=ADF=0
 | 
						|
*
 | 
						|
         RT = AB*SQRT( TWO )
 | 
						|
      END IF
 | 
						|
      IF( SM.LT.ZERO ) THEN
 | 
						|
         RT1 = HALF*( SM-RT )
 | 
						|
         SGN1 = -1
 | 
						|
*
 | 
						|
*        Order of execution important.
 | 
						|
*        To get fully accurate smaller eigenvalue,
 | 
						|
*        next line needs to be executed in higher precision.
 | 
						|
*
 | 
						|
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
 | 
						|
      ELSE IF( SM.GT.ZERO ) THEN
 | 
						|
         RT1 = HALF*( SM+RT )
 | 
						|
         SGN1 = 1
 | 
						|
*
 | 
						|
*        Order of execution important.
 | 
						|
*        To get fully accurate smaller eigenvalue,
 | 
						|
*        next line needs to be executed in higher precision.
 | 
						|
*
 | 
						|
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Includes case RT1 = RT2 = 0
 | 
						|
*
 | 
						|
         RT1 = HALF*RT
 | 
						|
         RT2 = -HALF*RT
 | 
						|
         SGN1 = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the eigenvector
 | 
						|
*
 | 
						|
      IF( DF.GE.ZERO ) THEN
 | 
						|
         CS = DF + RT
 | 
						|
         SGN2 = 1
 | 
						|
      ELSE
 | 
						|
         CS = DF - RT
 | 
						|
         SGN2 = -1
 | 
						|
      END IF
 | 
						|
      ACS = ABS( CS )
 | 
						|
      IF( ACS.GT.AB ) THEN
 | 
						|
         CT = -TB / CS
 | 
						|
         SN1 = ONE / SQRT( ONE+CT*CT )
 | 
						|
         CS1 = CT*SN1
 | 
						|
      ELSE
 | 
						|
         IF( AB.EQ.ZERO ) THEN
 | 
						|
            CS1 = ONE
 | 
						|
            SN1 = ZERO
 | 
						|
         ELSE
 | 
						|
            TN = -CS / TB
 | 
						|
            CS1 = ONE / SQRT( ONE+TN*TN )
 | 
						|
            SN1 = TN*CS1
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( SGN1.EQ.SGN2 ) THEN
 | 
						|
         TN = CS1
 | 
						|
         CS1 = -SN1
 | 
						|
         SN1 = TN
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAEV2
 | 
						|
*
 | 
						|
      END
 |