399 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			399 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHBGVD
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CHBGVD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
 | 
						|
*                          Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
 | 
						|
*                          LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
 | 
						|
*      $                   LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               RWORK( * ), W( * )
 | 
						|
*       COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
 | 
						|
*      $                   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHBGVD computes all the eigenvalues, and optionally, the eigenvectors
 | 
						|
*> of a complex generalized Hermitian-definite banded eigenproblem, of
 | 
						|
*> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 | 
						|
*> and banded, and B is also positive definite.  If eigenvectors are
 | 
						|
*> desired, it uses a divide and conquer algorithm.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangles of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangles of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KA
 | 
						|
*> \verbatim
 | 
						|
*>          KA is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KB
 | 
						|
*> \verbatim
 | 
						|
*>          KB is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix B if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX array, dimension (LDAB, N)
 | 
						|
*>          On entry, the upper or lower triangle of the Hermitian band
 | 
						|
*>          matrix A, stored in the first ka+1 rows of the array.  The
 | 
						|
*>          j-th column of A is stored in the j-th column of the array AB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 | 
						|
*>
 | 
						|
*>          On exit, the contents of AB are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KA+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] BB
 | 
						|
*> \verbatim
 | 
						|
*>          BB is COMPLEX array, dimension (LDBB, N)
 | 
						|
*>          On entry, the upper or lower triangle of the Hermitian band
 | 
						|
*>          matrix B, stored in the first kb+1 rows of the array.  The
 | 
						|
*>          j-th column of B is stored in the j-th column of the array BB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 | 
						|
*>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 | 
						|
*>
 | 
						|
*>          On exit, the factor S from the split Cholesky factorization
 | 
						|
*>          B = S**H*S, as returned by CPBSTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDBB
 | 
						|
*> \verbatim
 | 
						|
*>          LDBB is INTEGER
 | 
						|
*>          The leading dimension of the array BB.  LDBB >= KB+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX array, dimension (LDZ, N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | 
						|
*>          eigenvectors, with the i-th column of Z holding the
 | 
						|
*>          eigenvector associated with W(i). The eigenvectors are
 | 
						|
*>          normalized so that Z**H*B*Z = I.
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If N <= 1,               LWORK >= 1.
 | 
						|
*>          If JOBZ = 'N' and N > 1, LWORK >= N.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal sizes of the WORK, RWORK and
 | 
						|
*>          IWORK arrays, returns these values as the first entries of
 | 
						|
*>          the WORK, RWORK and IWORK arrays, and no error message
 | 
						|
*>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (MAX(1,LRWORK))
 | 
						|
*>          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LRWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LRWORK is INTEGER
 | 
						|
*>          The dimension of array RWORK.
 | 
						|
*>          If N <= 1,               LRWORK >= 1.
 | 
						|
*>          If JOBZ = 'N' and N > 1, LRWORK >= N.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
 | 
						|
*>
 | 
						|
*>          If LRWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal sizes of the WORK, RWORK
 | 
						|
*>          and IWORK arrays, returns these values as the first entries
 | 
						|
*>          of the WORK, RWORK and IWORK arrays, and no error message
 | 
						|
*>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of array IWORK.
 | 
						|
*>          If JOBZ = 'N' or N <= 1, LIWORK >= 1.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal sizes of the WORK, RWORK
 | 
						|
*>          and IWORK arrays, returns these values as the first entries
 | 
						|
*>          of the WORK, RWORK and IWORK arrays, and no error message
 | 
						|
*>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, and i is:
 | 
						|
*>             <= N:  the algorithm failed to converge:
 | 
						|
*>                    i off-diagonal elements of an intermediate
 | 
						|
*>                    tridiagonal form did not converge to zero;
 | 
						|
*>             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
 | 
						|
*>                    returned INFO = i: B is not positive definite.
 | 
						|
*>                    The factorization of B could not be completed and
 | 
						|
*>                    no eigenvalues or eigenvectors were computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHEReigen
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
 | 
						|
     $                   Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
 | 
						|
     $                   LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
 | 
						|
     $                   LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               RWORK( * ), W( * )
 | 
						|
      COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
 | 
						|
     $                   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            CONE, CZERO
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                   CZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, UPPER, WANTZ
 | 
						|
      CHARACTER          VECT
 | 
						|
      INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
 | 
						|
     $                   LLWK2, LRWMIN, LWMIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SSTERF, XERBLA, CGEMM, CHBGST, CHBTRD, CLACPY,
 | 
						|
     $                   CPBSTF, CSTEDC
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LE.1 ) THEN
 | 
						|
         LWMIN = 1+N
 | 
						|
         LRWMIN = 1+N
 | 
						|
         LIWMIN = 1
 | 
						|
      ELSE IF( WANTZ ) THEN
 | 
						|
         LWMIN = 2*N**2
 | 
						|
         LRWMIN = 1 + 5*N + 2*N**2
 | 
						|
         LIWMIN = 3 + 5*N
 | 
						|
      ELSE
 | 
						|
         LWMIN = N
 | 
						|
         LRWMIN = N
 | 
						|
         LIWMIN = 1
 | 
						|
      END IF
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KA.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDAB.LT.KA+1 ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDBB.LT.KB+1 ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
         RWORK( 1 ) = LRWMIN
 | 
						|
         IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -14
 | 
						|
         ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -16
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -18
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CHBGVD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form a split Cholesky factorization of B.
 | 
						|
*
 | 
						|
      CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         INFO = N + INFO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Transform problem to standard eigenvalue problem.
 | 
						|
*
 | 
						|
      INDE = 1
 | 
						|
      INDWRK = INDE + N
 | 
						|
      INDWK2 = 1 + N*N
 | 
						|
      LLWK2 = LWORK - INDWK2 + 2
 | 
						|
      LLRWK = LRWORK - INDWRK + 2
 | 
						|
      CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
 | 
						|
     $             WORK, RWORK, IINFO )
 | 
						|
*
 | 
						|
*     Reduce Hermitian band matrix to tridiagonal form.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         VECT = 'U'
 | 
						|
      ELSE
 | 
						|
         VECT = 'N'
 | 
						|
      END IF
 | 
						|
      CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
 | 
						|
     $             LDZ, WORK, IINFO )
 | 
						|
*
 | 
						|
*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEDC.
 | 
						|
*
 | 
						|
      IF( .NOT.WANTZ ) THEN
 | 
						|
         CALL SSTERF( N, W, RWORK( INDE ), INFO )
 | 
						|
      ELSE
 | 
						|
         CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
 | 
						|
     $                LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
 | 
						|
     $                INFO )
 | 
						|
         CALL CGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
 | 
						|
     $               WORK( INDWK2 ), N )
 | 
						|
         CALL CLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      RWORK( 1 ) = LRWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHBGVD
 | 
						|
*
 | 
						|
      END
 |