838 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			838 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CBDSQR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CBDSQR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbdsqr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbdsqr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbdsqr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
 | 
						|
*                          LDU, C, LDC, RWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * ), RWORK( * )
 | 
						|
*       COMPLEX            C( LDC, * ), U( LDU, * ), VT( LDVT, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CBDSQR computes the singular values and, optionally, the right and/or
 | 
						|
*> left singular vectors from the singular value decomposition (SVD) of
 | 
						|
*> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
 | 
						|
*> zero-shift QR algorithm.  The SVD of B has the form
 | 
						|
*>
 | 
						|
*>    B = Q * S * P**H
 | 
						|
*>
 | 
						|
*> where S is the diagonal matrix of singular values, Q is an orthogonal
 | 
						|
*> matrix of left singular vectors, and P is an orthogonal matrix of
 | 
						|
*> right singular vectors.  If left singular vectors are requested, this
 | 
						|
*> subroutine actually returns U*Q instead of Q, and, if right singular
 | 
						|
*> vectors are requested, this subroutine returns P**H*VT instead of
 | 
						|
*> P**H, for given complex input matrices U and VT.  When U and VT are
 | 
						|
*> the unitary matrices that reduce a general matrix A to bidiagonal
 | 
						|
*> form: A = U*B*VT, as computed by CGEBRD, then
 | 
						|
*>
 | 
						|
*>    A = (U*Q) * S * (P**H*VT)
 | 
						|
*>
 | 
						|
*> is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
 | 
						|
*> for a given complex input matrix C.
 | 
						|
*>
 | 
						|
*> See "Computing  Small Singular Values of Bidiagonal Matrices With
 | 
						|
*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
 | 
						|
*> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
 | 
						|
*> no. 5, pp. 873-912, Sept 1990) and
 | 
						|
*> "Accurate singular values and differential qd algorithms," by
 | 
						|
*> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
 | 
						|
*> Department, University of California at Berkeley, July 1992
 | 
						|
*> for a detailed description of the algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  B is upper bidiagonal;
 | 
						|
*>          = 'L':  B is lower bidiagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NCVT
 | 
						|
*> \verbatim
 | 
						|
*>          NCVT is INTEGER
 | 
						|
*>          The number of columns of the matrix VT. NCVT >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRU
 | 
						|
*> \verbatim
 | 
						|
*>          NRU is INTEGER
 | 
						|
*>          The number of rows of the matrix U. NRU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NCC
 | 
						|
*> \verbatim
 | 
						|
*>          NCC is INTEGER
 | 
						|
*>          The number of columns of the matrix C. NCC >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          On entry, the n diagonal elements of the bidiagonal matrix B.
 | 
						|
*>          On exit, if INFO=0, the singular values of B in decreasing
 | 
						|
*>          order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>          On entry, the N-1 offdiagonal elements of the bidiagonal
 | 
						|
*>          matrix B.
 | 
						|
*>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
 | 
						|
*>          will contain the diagonal and superdiagonal elements of a
 | 
						|
*>          bidiagonal matrix orthogonally equivalent to the one given
 | 
						|
*>          as input.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is COMPLEX array, dimension (LDVT, NCVT)
 | 
						|
*>          On entry, an N-by-NCVT matrix VT.
 | 
						|
*>          On exit, VT is overwritten by P**H * VT.
 | 
						|
*>          Not referenced if NCVT = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVT
 | 
						|
*> \verbatim
 | 
						|
*>          LDVT is INTEGER
 | 
						|
*>          The leading dimension of the array VT.
 | 
						|
*>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX array, dimension (LDU, N)
 | 
						|
*>          On entry, an NRU-by-N matrix U.
 | 
						|
*>          On exit, U is overwritten by U * Q.
 | 
						|
*>          Not referenced if NRU = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U.  LDU >= max(1,NRU).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX array, dimension (LDC, NCC)
 | 
						|
*>          On entry, an N-by-NCC matrix C.
 | 
						|
*>          On exit, C is overwritten by Q**H * C.
 | 
						|
*>          Not referenced if NCC = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C.
 | 
						|
*>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (4*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  If INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  the algorithm did not converge; D and E contain the
 | 
						|
*>                elements of a bidiagonal matrix which is orthogonally
 | 
						|
*>                similar to the input matrix B;  if INFO = i, i
 | 
						|
*>                elements of E have not converged to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Internal Parameters:
 | 
						|
*  =========================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>  TOLMUL  REAL, default = max(10,min(100,EPS**(-1/8)))
 | 
						|
*>          TOLMUL controls the convergence criterion of the QR loop.
 | 
						|
*>          If it is positive, TOLMUL*EPS is the desired relative
 | 
						|
*>             precision in the computed singular values.
 | 
						|
*>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
 | 
						|
*>             desired absolute accuracy in the computed singular
 | 
						|
*>             values (corresponds to relative accuracy
 | 
						|
*>             abs(TOLMUL*EPS) in the largest singular value.
 | 
						|
*>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
 | 
						|
*>             between 10 (for fast convergence) and .1/EPS
 | 
						|
*>             (for there to be some accuracy in the results).
 | 
						|
*>          Default is to lose at either one eighth or 2 of the
 | 
						|
*>             available decimal digits in each computed singular value
 | 
						|
*>             (whichever is smaller).
 | 
						|
*>
 | 
						|
*>  MAXITR  INTEGER, default = 6
 | 
						|
*>          MAXITR controls the maximum number of passes of the
 | 
						|
*>          algorithm through its inner loop. The algorithms stops
 | 
						|
*>          (and so fails to converge) if the number of passes
 | 
						|
*>          through the inner loop exceeds MAXITR*N**2.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
 | 
						|
     $                   LDU, C, LDC, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * ), RWORK( * )
 | 
						|
      COMPLEX            C( LDC, * ), U( LDU, * ), VT( LDVT, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E0 )
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E0 )
 | 
						|
      REAL               NEGONE
 | 
						|
      PARAMETER          ( NEGONE = -1.0E0 )
 | 
						|
      REAL               HNDRTH
 | 
						|
      PARAMETER          ( HNDRTH = 0.01E0 )
 | 
						|
      REAL               TEN
 | 
						|
      PARAMETER          ( TEN = 10.0E0 )
 | 
						|
      REAL               HNDRD
 | 
						|
      PARAMETER          ( HNDRD = 100.0E0 )
 | 
						|
      REAL               MEIGTH
 | 
						|
      PARAMETER          ( MEIGTH = -0.125E0 )
 | 
						|
      INTEGER            MAXITR
 | 
						|
      PARAMETER          ( MAXITR = 6 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER, ROTATE
 | 
						|
      INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
 | 
						|
     $                   NM12, NM13, OLDLL, OLDM
 | 
						|
      REAL               ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
 | 
						|
     $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
 | 
						|
     $                   SINR, SLL, SMAX, SMIN, SMINOA,
 | 
						|
     $                   SN, THRESH, TOL, TOLMUL, UNFL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           LSAME, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLASR, CSROT, CSSCAL, CSWAP, SLARTG, SLAS2,
 | 
						|
     $                   SLASQ1, SLASV2, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NCVT.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NRU.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( NCC.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
 | 
						|
     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
 | 
						|
     $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
 | 
						|
         INFO = -13
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CBDSQR', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( N.EQ.1 )
 | 
						|
     $   GO TO 160
 | 
						|
*
 | 
						|
*     ROTATE is true if any singular vectors desired, false otherwise
 | 
						|
*
 | 
						|
      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
 | 
						|
*
 | 
						|
*     If no singular vectors desired, use qd algorithm
 | 
						|
*
 | 
						|
      IF( .NOT.ROTATE ) THEN
 | 
						|
         CALL SLASQ1( N, D, E, RWORK, INFO )
 | 
						|
*
 | 
						|
*     If INFO equals 2, dqds didn't finish, try to finish
 | 
						|
*
 | 
						|
         IF( INFO .NE. 2 ) RETURN
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NM1 = N - 1
 | 
						|
      NM12 = NM1 + NM1
 | 
						|
      NM13 = NM12 + NM1
 | 
						|
      IDIR = 0
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     If matrix lower bidiagonal, rotate to be upper bidiagonal
 | 
						|
*     by applying Givens rotations on the left
 | 
						|
*
 | 
						|
      IF( LOWER ) THEN
 | 
						|
         DO 10 I = 1, N - 1
 | 
						|
            CALL SLARTG( D( I ), E( I ), CS, SN, R )
 | 
						|
            D( I ) = R
 | 
						|
            E( I ) = SN*D( I+1 )
 | 
						|
            D( I+1 ) = CS*D( I+1 )
 | 
						|
            RWORK( I ) = CS
 | 
						|
            RWORK( NM1+I ) = SN
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        Update singular vectors if desired
 | 
						|
*
 | 
						|
         IF( NRU.GT.0 )
 | 
						|
     $      CALL CLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
 | 
						|
     $                  U, LDU )
 | 
						|
         IF( NCC.GT.0 )
 | 
						|
     $      CALL CLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
 | 
						|
     $                  C, LDC )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute singular values to relative accuracy TOL
 | 
						|
*     (By setting TOL to be negative, algorithm will compute
 | 
						|
*     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
 | 
						|
*
 | 
						|
      TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
 | 
						|
      TOL = TOLMUL*EPS
 | 
						|
*
 | 
						|
*     Compute approximate maximum, minimum singular values
 | 
						|
*
 | 
						|
      SMAX = ZERO
 | 
						|
      DO 20 I = 1, N
 | 
						|
         SMAX = MAX( SMAX, ABS( D( I ) ) )
 | 
						|
   20 CONTINUE
 | 
						|
      DO 30 I = 1, N - 1
 | 
						|
         SMAX = MAX( SMAX, ABS( E( I ) ) )
 | 
						|
   30 CONTINUE
 | 
						|
      SMIN = ZERO
 | 
						|
      IF( TOL.GE.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Relative accuracy desired
 | 
						|
*
 | 
						|
         SMINOA = ABS( D( 1 ) )
 | 
						|
         IF( SMINOA.EQ.ZERO )
 | 
						|
     $      GO TO 50
 | 
						|
         MU = SMINOA
 | 
						|
         DO 40 I = 2, N
 | 
						|
            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
 | 
						|
            SMINOA = MIN( SMINOA, MU )
 | 
						|
            IF( SMINOA.EQ.ZERO )
 | 
						|
     $         GO TO 50
 | 
						|
   40    CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
         SMINOA = SMINOA / SQRT( REAL( N ) )
 | 
						|
         THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Absolute accuracy desired
 | 
						|
*
 | 
						|
         THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Prepare for main iteration loop for the singular values
 | 
						|
*     (MAXIT is the maximum number of passes through the inner
 | 
						|
*     loop permitted before nonconvergence signalled.)
 | 
						|
*
 | 
						|
      MAXIT = MAXITR*N*N
 | 
						|
      ITER = 0
 | 
						|
      OLDLL = -1
 | 
						|
      OLDM = -1
 | 
						|
*
 | 
						|
*     M points to last element of unconverged part of matrix
 | 
						|
*
 | 
						|
      M = N
 | 
						|
*
 | 
						|
*     Begin main iteration loop
 | 
						|
*
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
*     Check for convergence or exceeding iteration count
 | 
						|
*
 | 
						|
      IF( M.LE.1 )
 | 
						|
     $   GO TO 160
 | 
						|
      IF( ITER.GT.MAXIT )
 | 
						|
     $   GO TO 200
 | 
						|
*
 | 
						|
*     Find diagonal block of matrix to work on
 | 
						|
*
 | 
						|
      IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
 | 
						|
     $   D( M ) = ZERO
 | 
						|
      SMAX = ABS( D( M ) )
 | 
						|
      DO 70 LLL = 1, M - 1
 | 
						|
         LL = M - LLL
 | 
						|
         ABSS = ABS( D( LL ) )
 | 
						|
         ABSE = ABS( E( LL ) )
 | 
						|
         IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
 | 
						|
     $      D( LL ) = ZERO
 | 
						|
         IF( ABSE.LE.THRESH )
 | 
						|
     $      GO TO 80
 | 
						|
         SMAX = MAX( SMAX, ABSS, ABSE )
 | 
						|
   70 CONTINUE
 | 
						|
      LL = 0
 | 
						|
      GO TO 90
 | 
						|
   80 CONTINUE
 | 
						|
      E( LL ) = ZERO
 | 
						|
*
 | 
						|
*     Matrix splits since E(LL) = 0
 | 
						|
*
 | 
						|
      IF( LL.EQ.M-1 ) THEN
 | 
						|
*
 | 
						|
*        Convergence of bottom singular value, return to top of loop
 | 
						|
*
 | 
						|
         M = M - 1
 | 
						|
         GO TO 60
 | 
						|
      END IF
 | 
						|
   90 CONTINUE
 | 
						|
      LL = LL + 1
 | 
						|
*
 | 
						|
*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
 | 
						|
*
 | 
						|
      IF( LL.EQ.M-1 ) THEN
 | 
						|
*
 | 
						|
*        2 by 2 block, handle separately
 | 
						|
*
 | 
						|
         CALL SLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
 | 
						|
     $                COSR, SINL, COSL )
 | 
						|
         D( M-1 ) = SIGMX
 | 
						|
         E( M-1 ) = ZERO
 | 
						|
         D( M ) = SIGMN
 | 
						|
*
 | 
						|
*        Compute singular vectors, if desired
 | 
						|
*
 | 
						|
         IF( NCVT.GT.0 )
 | 
						|
     $      CALL CSROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
 | 
						|
     $                  COSR, SINR )
 | 
						|
         IF( NRU.GT.0 )
 | 
						|
     $      CALL CSROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
 | 
						|
         IF( NCC.GT.0 )
 | 
						|
     $      CALL CSROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
 | 
						|
     $                  SINL )
 | 
						|
         M = M - 2
 | 
						|
         GO TO 60
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If working on new submatrix, choose shift direction
 | 
						|
*     (from larger end diagonal element towards smaller)
 | 
						|
*
 | 
						|
      IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
 | 
						|
         IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
 | 
						|
*
 | 
						|
*           Chase bulge from top (big end) to bottom (small end)
 | 
						|
*
 | 
						|
            IDIR = 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Chase bulge from bottom (big end) to top (small end)
 | 
						|
*
 | 
						|
            IDIR = 2
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Apply convergence tests
 | 
						|
*
 | 
						|
      IF( IDIR.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        Run convergence test in forward direction
 | 
						|
*        First apply standard test to bottom of matrix
 | 
						|
*
 | 
						|
         IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
 | 
						|
     $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
 | 
						|
            E( M-1 ) = ZERO
 | 
						|
            GO TO 60
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( TOL.GE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           If relative accuracy desired,
 | 
						|
*           apply convergence criterion forward
 | 
						|
*
 | 
						|
            MU = ABS( D( LL ) )
 | 
						|
            SMIN = MU
 | 
						|
            DO 100 LLL = LL, M - 1
 | 
						|
               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
 | 
						|
                  E( LLL ) = ZERO
 | 
						|
                  GO TO 60
 | 
						|
               END IF
 | 
						|
               MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
 | 
						|
               SMIN = MIN( SMIN, MU )
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Run convergence test in backward direction
 | 
						|
*        First apply standard test to top of matrix
 | 
						|
*
 | 
						|
         IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
 | 
						|
     $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
 | 
						|
            E( LL ) = ZERO
 | 
						|
            GO TO 60
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( TOL.GE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           If relative accuracy desired,
 | 
						|
*           apply convergence criterion backward
 | 
						|
*
 | 
						|
            MU = ABS( D( M ) )
 | 
						|
            SMIN = MU
 | 
						|
            DO 110 LLL = M - 1, LL, -1
 | 
						|
               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
 | 
						|
                  E( LLL ) = ZERO
 | 
						|
                  GO TO 60
 | 
						|
               END IF
 | 
						|
               MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
 | 
						|
               SMIN = MIN( SMIN, MU )
 | 
						|
  110       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      OLDLL = LL
 | 
						|
      OLDM = M
 | 
						|
*
 | 
						|
*     Compute shift.  First, test if shifting would ruin relative
 | 
						|
*     accuracy, and if so set the shift to zero.
 | 
						|
*
 | 
						|
      IF( TOL.GE.ZERO .AND. N*TOL*( SMIN / SMAX ).LE.
 | 
						|
     $    MAX( EPS, HNDRTH*TOL ) ) THEN
 | 
						|
*
 | 
						|
*        Use a zero shift to avoid loss of relative accuracy
 | 
						|
*
 | 
						|
         SHIFT = ZERO
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the shift from 2-by-2 block at end of matrix
 | 
						|
*
 | 
						|
         IF( IDIR.EQ.1 ) THEN
 | 
						|
            SLL = ABS( D( LL ) )
 | 
						|
            CALL SLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
 | 
						|
         ELSE
 | 
						|
            SLL = ABS( D( M ) )
 | 
						|
            CALL SLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Test if shift negligible, and if so set to zero
 | 
						|
*
 | 
						|
         IF( SLL.GT.ZERO ) THEN
 | 
						|
            IF( ( SHIFT / SLL )**2.LT.EPS )
 | 
						|
     $         SHIFT = ZERO
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Increment iteration count
 | 
						|
*
 | 
						|
      ITER = ITER + M - LL
 | 
						|
*
 | 
						|
*     If SHIFT = 0, do simplified QR iteration
 | 
						|
*
 | 
						|
      IF( SHIFT.EQ.ZERO ) THEN
 | 
						|
         IF( IDIR.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Chase bulge from top to bottom
 | 
						|
*           Save cosines and sines for later singular vector updates
 | 
						|
*
 | 
						|
            CS = ONE
 | 
						|
            OLDCS = ONE
 | 
						|
            DO 120 I = LL, M - 1
 | 
						|
               CALL SLARTG( D( I )*CS, E( I ), CS, SN, R )
 | 
						|
               IF( I.GT.LL )
 | 
						|
     $            E( I-1 ) = OLDSN*R
 | 
						|
               CALL SLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
 | 
						|
               RWORK( I-LL+1 ) = CS
 | 
						|
               RWORK( I-LL+1+NM1 ) = SN
 | 
						|
               RWORK( I-LL+1+NM12 ) = OLDCS
 | 
						|
               RWORK( I-LL+1+NM13 ) = OLDSN
 | 
						|
  120       CONTINUE
 | 
						|
            H = D( M )*CS
 | 
						|
            D( M ) = H*OLDCS
 | 
						|
            E( M-1 ) = H*OLDSN
 | 
						|
*
 | 
						|
*           Update singular vectors
 | 
						|
*
 | 
						|
            IF( NCVT.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
 | 
						|
     $                     RWORK( N ), VT( LL, 1 ), LDVT )
 | 
						|
            IF( NRU.GT.0 )
 | 
						|
     $         CALL CLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
 | 
						|
     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
 | 
						|
            IF( NCC.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
 | 
						|
     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
 | 
						|
*
 | 
						|
*           Test convergence
 | 
						|
*
 | 
						|
            IF( ABS( E( M-1 ) ).LE.THRESH )
 | 
						|
     $         E( M-1 ) = ZERO
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Chase bulge from bottom to top
 | 
						|
*           Save cosines and sines for later singular vector updates
 | 
						|
*
 | 
						|
            CS = ONE
 | 
						|
            OLDCS = ONE
 | 
						|
            DO 130 I = M, LL + 1, -1
 | 
						|
               CALL SLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
 | 
						|
               IF( I.LT.M )
 | 
						|
     $            E( I ) = OLDSN*R
 | 
						|
               CALL SLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
 | 
						|
               RWORK( I-LL ) = CS
 | 
						|
               RWORK( I-LL+NM1 ) = -SN
 | 
						|
               RWORK( I-LL+NM12 ) = OLDCS
 | 
						|
               RWORK( I-LL+NM13 ) = -OLDSN
 | 
						|
  130       CONTINUE
 | 
						|
            H = D( LL )*CS
 | 
						|
            D( LL ) = H*OLDCS
 | 
						|
            E( LL ) = H*OLDSN
 | 
						|
*
 | 
						|
*           Update singular vectors
 | 
						|
*
 | 
						|
            IF( NCVT.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
 | 
						|
     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
 | 
						|
            IF( NRU.GT.0 )
 | 
						|
     $         CALL CLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
 | 
						|
     $                     RWORK( N ), U( 1, LL ), LDU )
 | 
						|
            IF( NCC.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
 | 
						|
     $                     RWORK( N ), C( LL, 1 ), LDC )
 | 
						|
*
 | 
						|
*           Test convergence
 | 
						|
*
 | 
						|
            IF( ABS( E( LL ) ).LE.THRESH )
 | 
						|
     $         E( LL ) = ZERO
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use nonzero shift
 | 
						|
*
 | 
						|
         IF( IDIR.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Chase bulge from top to bottom
 | 
						|
*           Save cosines and sines for later singular vector updates
 | 
						|
*
 | 
						|
            F = ( ABS( D( LL ) )-SHIFT )*
 | 
						|
     $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
 | 
						|
            G = E( LL )
 | 
						|
            DO 140 I = LL, M - 1
 | 
						|
               CALL SLARTG( F, G, COSR, SINR, R )
 | 
						|
               IF( I.GT.LL )
 | 
						|
     $            E( I-1 ) = R
 | 
						|
               F = COSR*D( I ) + SINR*E( I )
 | 
						|
               E( I ) = COSR*E( I ) - SINR*D( I )
 | 
						|
               G = SINR*D( I+1 )
 | 
						|
               D( I+1 ) = COSR*D( I+1 )
 | 
						|
               CALL SLARTG( F, G, COSL, SINL, R )
 | 
						|
               D( I ) = R
 | 
						|
               F = COSL*E( I ) + SINL*D( I+1 )
 | 
						|
               D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
 | 
						|
               IF( I.LT.M-1 ) THEN
 | 
						|
                  G = SINL*E( I+1 )
 | 
						|
                  E( I+1 ) = COSL*E( I+1 )
 | 
						|
               END IF
 | 
						|
               RWORK( I-LL+1 ) = COSR
 | 
						|
               RWORK( I-LL+1+NM1 ) = SINR
 | 
						|
               RWORK( I-LL+1+NM12 ) = COSL
 | 
						|
               RWORK( I-LL+1+NM13 ) = SINL
 | 
						|
  140       CONTINUE
 | 
						|
            E( M-1 ) = F
 | 
						|
*
 | 
						|
*           Update singular vectors
 | 
						|
*
 | 
						|
            IF( NCVT.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
 | 
						|
     $                     RWORK( N ), VT( LL, 1 ), LDVT )
 | 
						|
            IF( NRU.GT.0 )
 | 
						|
     $         CALL CLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
 | 
						|
     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
 | 
						|
            IF( NCC.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
 | 
						|
     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
 | 
						|
*
 | 
						|
*           Test convergence
 | 
						|
*
 | 
						|
            IF( ABS( E( M-1 ) ).LE.THRESH )
 | 
						|
     $         E( M-1 ) = ZERO
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Chase bulge from bottom to top
 | 
						|
*           Save cosines and sines for later singular vector updates
 | 
						|
*
 | 
						|
            F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
 | 
						|
     $          D( M ) )
 | 
						|
            G = E( M-1 )
 | 
						|
            DO 150 I = M, LL + 1, -1
 | 
						|
               CALL SLARTG( F, G, COSR, SINR, R )
 | 
						|
               IF( I.LT.M )
 | 
						|
     $            E( I ) = R
 | 
						|
               F = COSR*D( I ) + SINR*E( I-1 )
 | 
						|
               E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
 | 
						|
               G = SINR*D( I-1 )
 | 
						|
               D( I-1 ) = COSR*D( I-1 )
 | 
						|
               CALL SLARTG( F, G, COSL, SINL, R )
 | 
						|
               D( I ) = R
 | 
						|
               F = COSL*E( I-1 ) + SINL*D( I-1 )
 | 
						|
               D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
 | 
						|
               IF( I.GT.LL+1 ) THEN
 | 
						|
                  G = SINL*E( I-2 )
 | 
						|
                  E( I-2 ) = COSL*E( I-2 )
 | 
						|
               END IF
 | 
						|
               RWORK( I-LL ) = COSR
 | 
						|
               RWORK( I-LL+NM1 ) = -SINR
 | 
						|
               RWORK( I-LL+NM12 ) = COSL
 | 
						|
               RWORK( I-LL+NM13 ) = -SINL
 | 
						|
  150       CONTINUE
 | 
						|
            E( LL ) = F
 | 
						|
*
 | 
						|
*           Test convergence
 | 
						|
*
 | 
						|
            IF( ABS( E( LL ) ).LE.THRESH )
 | 
						|
     $         E( LL ) = ZERO
 | 
						|
*
 | 
						|
*           Update singular vectors if desired
 | 
						|
*
 | 
						|
            IF( NCVT.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
 | 
						|
     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
 | 
						|
            IF( NRU.GT.0 )
 | 
						|
     $         CALL CLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
 | 
						|
     $                     RWORK( N ), U( 1, LL ), LDU )
 | 
						|
            IF( NCC.GT.0 )
 | 
						|
     $         CALL CLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
 | 
						|
     $                     RWORK( N ), C( LL, 1 ), LDC )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     QR iteration finished, go back and check convergence
 | 
						|
*
 | 
						|
      GO TO 60
 | 
						|
*
 | 
						|
*     All singular values converged, so make them positive
 | 
						|
*
 | 
						|
  160 CONTINUE
 | 
						|
      DO 170 I = 1, N
 | 
						|
         IF( D( I ).LT.ZERO ) THEN
 | 
						|
            D( I ) = -D( I )
 | 
						|
*
 | 
						|
*           Change sign of singular vectors, if desired
 | 
						|
*
 | 
						|
            IF( NCVT.GT.0 )
 | 
						|
     $         CALL CSSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
 | 
						|
         END IF
 | 
						|
  170 CONTINUE
 | 
						|
*
 | 
						|
*     Sort the singular values into decreasing order (insertion sort on
 | 
						|
*     singular values, but only one transposition per singular vector)
 | 
						|
*
 | 
						|
      DO 190 I = 1, N - 1
 | 
						|
*
 | 
						|
*        Scan for smallest D(I)
 | 
						|
*
 | 
						|
         ISUB = 1
 | 
						|
         SMIN = D( 1 )
 | 
						|
         DO 180 J = 2, N + 1 - I
 | 
						|
            IF( D( J ).LE.SMIN ) THEN
 | 
						|
               ISUB = J
 | 
						|
               SMIN = D( J )
 | 
						|
            END IF
 | 
						|
  180    CONTINUE
 | 
						|
         IF( ISUB.NE.N+1-I ) THEN
 | 
						|
*
 | 
						|
*           Swap singular values and vectors
 | 
						|
*
 | 
						|
            D( ISUB ) = D( N+1-I )
 | 
						|
            D( N+1-I ) = SMIN
 | 
						|
            IF( NCVT.GT.0 )
 | 
						|
     $         CALL CSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
 | 
						|
     $                     LDVT )
 | 
						|
            IF( NRU.GT.0 )
 | 
						|
     $         CALL CSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
 | 
						|
            IF( NCC.GT.0 )
 | 
						|
     $         CALL CSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
 | 
						|
         END IF
 | 
						|
  190 CONTINUE
 | 
						|
      GO TO 220
 | 
						|
*
 | 
						|
*     Maximum number of iterations exceeded, failure to converge
 | 
						|
*
 | 
						|
  200 CONTINUE
 | 
						|
      INFO = 0
 | 
						|
      DO 210 I = 1, N - 1
 | 
						|
         IF( E( I ).NE.ZERO )
 | 
						|
     $      INFO = INFO + 1
 | 
						|
  210 CONTINUE
 | 
						|
  220 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CBDSQR
 | 
						|
*
 | 
						|
      END
 |