506 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			506 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGELS + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
 | |
| *                         INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGELS solves overdetermined or underdetermined complex linear systems
 | |
| *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
 | |
| *> or LQ factorization of A.  It is assumed that A has full rank.
 | |
| *>
 | |
| *> The following options are provided:
 | |
| *>
 | |
| *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
 | |
| *>    an overdetermined system, i.e., solve the least squares problem
 | |
| *>                 minimize || B - A*X ||.
 | |
| *>
 | |
| *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
 | |
| *>    an underdetermined system A * X = B.
 | |
| *>
 | |
| *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
 | |
| *>    an undetermined system A**H * X = B.
 | |
| *>
 | |
| *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
 | |
| *>    an overdetermined system, i.e., solve the least squares problem
 | |
| *>                 minimize || B - A**H * X ||.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | |
| *> matrix X.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N': the linear system involves A;
 | |
| *>          = 'C': the linear system involves A**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of
 | |
| *>          columns of the matrices B and X. NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>            if M >= N, A is overwritten by details of its QR
 | |
| *>                       factorization as returned by ZGEQRF;
 | |
| *>            if M <  N, A is overwritten by details of its LQ
 | |
| *>                       factorization as returned by ZGELQF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | |
| *>          On entry, the matrix B of right hand side vectors, stored
 | |
| *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
 | |
| *>          if TRANS = 'C'.
 | |
| *>          On exit, if INFO = 0, B is overwritten by the solution
 | |
| *>          vectors, stored columnwise:
 | |
| *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
 | |
| *>          squares solution vectors; the residual sum of squares for the
 | |
| *>          solution in each column is given by the sum of squares of the
 | |
| *>          modulus of elements N+1 to M in that column;
 | |
| *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
 | |
| *>          minimum norm solution vectors;
 | |
| *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
 | |
| *>          minimum norm solution vectors;
 | |
| *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
 | |
| *>          least squares solution vectors; the residual sum of squares
 | |
| *>          for the solution in each column is given by the sum of
 | |
| *>          squares of the modulus of elements M+1 to N in that column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
 | |
| *>          For optimal performance,
 | |
| *>          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
 | |
| *>          where MN = min(M,N) and NB is the optimum block size.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO =  i, the i-th diagonal element of the
 | |
| *>                triangular factor of A is zero, so that A does not have
 | |
| *>                full rank; the least squares solution could not be
 | |
| *>                computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16GEsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
 | |
|      $                  INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CZERO
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, TPSD
 | |
|       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   RWORK( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
 | |
|      $                   ZTRTRS, ZUNMLQ, ZUNMQR
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       MN = MIN( M, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
 | |
|      $          THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
| *
 | |
| *     Figure out optimal block size
 | |
| *
 | |
|       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
 | |
| *
 | |
|          TPSD = .TRUE.
 | |
|          IF( LSAME( TRANS, 'N' ) )
 | |
|      $      TPSD = .FALSE.
 | |
| *
 | |
|          IF( M.GE.N ) THEN
 | |
|             NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
 | |
|             IF( TPSD ) THEN
 | |
|                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
 | |
|      $              -1 ) )
 | |
|             ELSE
 | |
|                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
 | |
|      $              -1 ) )
 | |
|             END IF
 | |
|          ELSE
 | |
|             NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
 | |
|             IF( TPSD ) THEN
 | |
|                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
 | |
|      $              -1 ) )
 | |
|             ELSE
 | |
|                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
 | |
|      $              -1 ) )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
 | |
|          WORK( 1 ) = DBLE( WSIZE )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGELS ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | |
|          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
 | |
|          GO TO 50
 | |
|       END IF
 | |
| *
 | |
|       BROW = M
 | |
|       IF( TPSD )
 | |
|      $   BROW = N
 | |
|       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        compute QR factorization of A
 | |
| *
 | |
|          CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
 | |
|      $                INFO )
 | |
| *
 | |
| *        workspace at least N, optimally N*NB
 | |
| *
 | |
|          IF( .NOT.TPSD ) THEN
 | |
| *
 | |
| *           Least-Squares Problem min || A * X - B ||
 | |
| *
 | |
| *           B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
 | |
|      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           workspace at least NRHS, optimally NRHS*NB
 | |
| *
 | |
| *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|             SCLLEN = N
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Overdetermined system of equations A**H * X = B
 | |
| *
 | |
| *           B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
 | |
|      $                   N, NRHS, A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *           B(N+1:M,1:NRHS) = ZERO
 | |
| *
 | |
|             DO 20 J = 1, NRHS
 | |
|                DO 10 I = N + 1, M
 | |
|                   B( I, J ) = CZERO
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
 | |
|      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           workspace at least NRHS, optimally NRHS*NB
 | |
| *
 | |
|             SCLLEN = M
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute LQ factorization of A
 | |
| *
 | |
|          CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
 | |
|      $                INFO )
 | |
| *
 | |
| *        workspace at least M, optimally M*NB.
 | |
| *
 | |
|          IF( .NOT.TPSD ) THEN
 | |
| *
 | |
| *           underdetermined system of equations A * X = B
 | |
| *
 | |
| *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *           B(M+1:N,1:NRHS) = 0
 | |
| *
 | |
|             DO 40 J = 1, NRHS
 | |
|                DO 30 I = M + 1, N
 | |
|                   B( I, J ) = CZERO
 | |
|    30          CONTINUE
 | |
|    40       CONTINUE
 | |
| *
 | |
| *           B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
 | |
|      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           workspace at least NRHS, optimally NRHS*NB
 | |
| *
 | |
|             SCLLEN = N
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           overdetermined system min || A**H * X - B ||
 | |
| *
 | |
| *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
 | |
|      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           workspace at least NRHS, optimally NRHS*NB
 | |
| *
 | |
| *           B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
 | |
|      $                   M, NRHS, A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|             SCLLEN = M
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       END IF
 | |
| *
 | |
|    50 CONTINUE
 | |
|       WORK( 1 ) = DBLE( WSIZE )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGELS
 | |
| *
 | |
|       END
 |