294 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSTEGR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSTEGR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstegr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstegr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstegr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | |
| *                  ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | |
| *                  LIWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE
 | |
| *       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | |
| *       DOUBLE PRECISION ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
 | |
| *       DOUBLE PRECISION   Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSTEGR computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
 | |
| *> a well defined set of pairwise different real eigenvalues, the corresponding
 | |
| *> real eigenvectors are pairwise orthogonal.
 | |
| *>
 | |
| *> The spectrum may be computed either completely or partially by specifying
 | |
| *> either an interval (VL,VU] or a range of indices IL:IU for the desired
 | |
| *> eigenvalues.
 | |
| *>
 | |
| *> DSTEGR is a compatability wrapper around the improved DSTEMR routine.
 | |
| *> See DSTEMR for further details.
 | |
| *>
 | |
| *> One important change is that the ABSTOL parameter no longer provides any
 | |
| *> benefit and hence is no longer used.
 | |
| *>
 | |
| *> Note : DSTEGR and DSTEMR work only on machines which follow
 | |
| *> IEEE-754 floating-point standard in their handling of infinities and
 | |
| *> NaNs.  Normal execution may create these exceptiona values and hence
 | |
| *> may abort due to a floating point exception in environments which
 | |
| *> do not conform to the IEEE-754 standard.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found.
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found.
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the N diagonal elements of the tridiagonal matrix
 | |
| *>          T. On exit, D is overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
 | |
| *>          input, but is used internally as workspace.
 | |
| *>          On exit, E is overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is DOUBLE PRECISION
 | |
| *>
 | |
| *>          If RANGE='V', the lower and upper bounds of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the indices (in ascending order) of the
 | |
| *>          smallest and largest eigenvalues to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is DOUBLE PRECISION
 | |
| *>          Unused.  Was the absolute error tolerance for the
 | |
| *>          eigenvalues/eigenvectors in previous versions.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The first M elements contain the selected eigenvalues in
 | |
| *>          ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
 | |
| *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix T
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *>          Supplying N columns is always safe.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', then LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ISUPPZ
 | |
| *> \verbatim
 | |
| *>          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
 | |
| *>          The support of the eigenvectors in Z, i.e., the indices
 | |
| *>          indicating the nonzero elements in Z. The i-th computed eigenvector
 | |
| *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
 | |
| *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
 | |
| *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal
 | |
| *>          (and minimal) LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,18*N)
 | |
| *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (LIWORK)
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
 | |
| *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
 | |
| *>          if only the eigenvalues are to be computed.
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the IWORK array,
 | |
| *>          returns this value as the first entry of the IWORK array, and
 | |
| *>          no error message related to LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          On exit, INFO
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = 1X, internal error in DLARRE,
 | |
| *>                if INFO = 2X, internal error in DLARRV.
 | |
| *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
 | |
| *>                the nonzero error code returned by DLARRE or
 | |
| *>                DLARRV, respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Inderjit Dhillon, IBM Almaden, USA \n
 | |
| *> Osni Marques, LBNL/NERSC, USA \n
 | |
| *> Christof Voemel, LBNL/NERSC, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | |
|      $           ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | |
|      $           LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE
 | |
|       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | |
|       DOUBLE PRECISION ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
 | |
|       DOUBLE PRECISION   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL TRYRAC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL DSTEMR
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
|       INFO = 0
 | |
|       TRYRAC = .FALSE.
 | |
| 
 | |
|       CALL DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | |
|      $                   M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK,
 | |
|      $                   IWORK, LIWORK, INFO )
 | |
| *
 | |
| *     End of DSTEGR
 | |
| *
 | |
|       END
 |