267 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAQP2 computes a QR factorization with column pivoting of the matrix block.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAQP2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqp2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqp2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqp2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
 | |
| *                          WORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, M, N, OFFSET
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       REAL               VN1( * ), VN2( * )
 | |
| *       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAQP2 computes a QR factorization with column pivoting of
 | |
| *> the block A(OFFSET+1:M,1:N).
 | |
| *> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] OFFSET
 | |
| *> \verbatim
 | |
| *>          OFFSET is INTEGER
 | |
| *>          The number of rows of the matrix A that must be pivoted
 | |
| *>          but no factorized. OFFSET >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is 
 | |
| *>          the triangular factor obtained; the elements in block
 | |
| *>          A(OFFSET+1:M,1:N) below the diagonal, together with the
 | |
| *>          array TAU, represent the orthogonal matrix Q as a product of
 | |
| *>          elementary reflectors. Block A(1:OFFSET,1:N) has been
 | |
| *>          accordingly pivoted, but no factorized.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 | |
| *>          to the front of A*P (a leading column); if JPVT(i) = 0,
 | |
| *>          the i-th column of A is a free column.
 | |
| *>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | |
| *>          was the k-th column of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VN1
 | |
| *> \verbatim
 | |
| *>          VN1 is REAL array, dimension (N)
 | |
| *>          The vector with the partial column norms.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VN2
 | |
| *> \verbatim
 | |
| *>          VN2 is REAL array, dimension (N)
 | |
| *>          The vector with the exact column norms.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
 | |
| *>    X. Sun, Computer Science Dept., Duke University, USA
 | |
| *> \n
 | |
| *>  Partial column norm updating strategy modified on April 2011
 | |
| *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 | |
| *>    University of Zagreb, Croatia.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> LAPACK Working Note 176
 | |
| *
 | |
| *> \htmlonly
 | |
| *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
 | |
|      $                   WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, M, N, OFFSET
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       REAL               VN1( * ), VN2( * )
 | |
|       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, ITEMP, J, MN, OFFPI, PVT
 | |
|       REAL               TEMP, TEMP2, TOL3Z
 | |
|       COMPLEX            AII
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLARF, CLARFG, CSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SCNRM2, SLAMCH
 | |
|       EXTERNAL           ISAMAX, SCNRM2, SLAMCH
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       MN = MIN( M-OFFSET, N )
 | |
|       TOL3Z = SQRT(SLAMCH('Epsilon'))
 | |
| *
 | |
| *     Compute factorization.
 | |
| *
 | |
|       DO 20 I = 1, MN
 | |
| *
 | |
|          OFFPI = OFFSET + I
 | |
| *
 | |
| *        Determine ith pivot column and swap if necessary.
 | |
| *
 | |
|          PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 )
 | |
| *
 | |
|          IF( PVT.NE.I ) THEN
 | |
|             CALL CSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
 | |
|             ITEMP = JPVT( PVT )
 | |
|             JPVT( PVT ) = JPVT( I )
 | |
|             JPVT( I ) = ITEMP
 | |
|             VN1( PVT ) = VN1( I )
 | |
|             VN2( PVT ) = VN2( I )
 | |
|          END IF
 | |
| *
 | |
| *        Generate elementary reflector H(i).
 | |
| *
 | |
|          IF( OFFPI.LT.M ) THEN
 | |
|             CALL CLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
 | |
|      $                   TAU( I ) )
 | |
|          ELSE
 | |
|             CALL CLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
 | |
|          END IF
 | |
| *
 | |
|          IF( I.LT.N ) THEN
 | |
| *
 | |
| *           Apply H(i)**H to A(offset+i:m,i+1:n) from the left.
 | |
| *
 | |
|             AII = A( OFFPI, I )
 | |
|             A( OFFPI, I ) = CONE
 | |
|             CALL CLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
 | |
|      $                  CONJG( TAU( I ) ), A( OFFPI, I+1 ), LDA,
 | |
|      $                  WORK( 1 ) )
 | |
|             A( OFFPI, I ) = AII
 | |
|          END IF
 | |
| *
 | |
| *        Update partial column norms.
 | |
| *
 | |
|          DO 10 J = I + 1, N
 | |
|             IF( VN1( J ).NE.ZERO ) THEN
 | |
| *
 | |
| *              NOTE: The following 4 lines follow from the analysis in
 | |
| *              Lapack Working Note 176.
 | |
| *
 | |
|                TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
 | |
|                TEMP = MAX( TEMP, ZERO )
 | |
|                TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
 | |
|                IF( TEMP2 .LE. TOL3Z ) THEN
 | |
|                   IF( OFFPI.LT.M ) THEN
 | |
|                      VN1( J ) = SCNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
 | |
|                      VN2( J ) = VN1( J )
 | |
|                   ELSE
 | |
|                      VN1( J ) = ZERO
 | |
|                      VN2( J ) = ZERO
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   VN1( J ) = VN1( J )*SQRT( TEMP )
 | |
|                END IF
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
| *
 | |
|    20 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAQP2
 | |
| *
 | |
|       END
 |