409 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			409 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSPGVX
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSPGVX + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvx.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvx.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvx.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
 | 
						|
*                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
 | 
						|
*                          IFAIL, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, RANGE, UPLO
 | 
						|
*       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
 | 
						|
*       DOUBLE PRECISION   ABSTOL, VL, VU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IFAIL( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
 | 
						|
*      $                   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSPGVX computes selected eigenvalues, and optionally, eigenvectors
 | 
						|
*> of a real generalized symmetric-definite eigenproblem, of the form
 | 
						|
*> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
 | 
						|
*> and B are assumed to be symmetric, stored in packed storage, and B
 | 
						|
*> is also positive definite.  Eigenvalues and eigenvectors can be
 | 
						|
*> selected by specifying either a range of values or a range of indices
 | 
						|
*> for the desired eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          Specifies the problem type to be solved:
 | 
						|
*>          = 1:  A*x = (lambda)*B*x
 | 
						|
*>          = 2:  A*B*x = (lambda)*x
 | 
						|
*>          = 3:  B*A*x = (lambda)*x
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANGE
 | 
						|
*> \verbatim
 | 
						|
*>          RANGE is CHARACTER*1
 | 
						|
*>          = 'A': all eigenvalues will be found.
 | 
						|
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | 
						|
*>                 will be found.
 | 
						|
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangle of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix pencil (A,B).  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          A, packed columnwise in a linear array.  The j-th column of A
 | 
						|
*>          is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, the contents of AP are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] BP
 | 
						|
*> \verbatim
 | 
						|
*>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          B, packed columnwise in a linear array.  The j-th column of B
 | 
						|
*>          is stored in the array BP as follows:
 | 
						|
*>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, the triangular factor U or L from the Cholesky
 | 
						|
*>          factorization B = U**T*U or B = L*L**T, in the same storage
 | 
						|
*>          format as B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VU
 | 
						|
*> \verbatim
 | 
						|
*>          VU is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          If RANGE='V', the lower and upper bounds of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IL
 | 
						|
*> \verbatim
 | 
						|
*>          IL is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IU
 | 
						|
*> \verbatim
 | 
						|
*>          IU is INTEGER
 | 
						|
*>
 | 
						|
*>          If RANGE='I', the indices (in ascending order) of the
 | 
						|
*>          smallest and largest eigenvalues to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ABSTOL
 | 
						|
*> \verbatim
 | 
						|
*>          ABSTOL is DOUBLE PRECISION
 | 
						|
*>          The absolute error tolerance for the eigenvalues.
 | 
						|
*>          An approximate eigenvalue is accepted as converged
 | 
						|
*>          when it is determined to lie in an interval [a,b]
 | 
						|
*>          of width less than or equal to
 | 
						|
*>
 | 
						|
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | 
						|
*>
 | 
						|
*>          where EPS is the machine precision.  If ABSTOL is less than
 | 
						|
*>          or equal to zero, then  EPS*|T|  will be used in its place,
 | 
						|
*>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | 
						|
*>          by reducing A to tridiagonal form.
 | 
						|
*>
 | 
						|
*>          Eigenvalues will be computed most accurately when ABSTOL is
 | 
						|
*>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
 | 
						|
*>          If this routine returns with INFO>0, indicating that some
 | 
						|
*>          eigenvectors did not converge, try setting ABSTOL to
 | 
						|
*>          2*DLAMCH('S').
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The total number of eigenvalues found.  0 <= M <= N.
 | 
						|
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On normal exit, the first M elements contain the selected
 | 
						|
*>          eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | 
						|
*>          contain the orthonormal eigenvectors of the matrix A
 | 
						|
*>          corresponding to the selected eigenvalues, with the i-th
 | 
						|
*>          column of Z holding the eigenvector associated with W(i).
 | 
						|
*>          The eigenvectors are normalized as follows:
 | 
						|
*>          if ITYPE = 1 or 2, Z**T*B*Z = I;
 | 
						|
*>          if ITYPE = 3, Z**T*inv(B)*Z = I.
 | 
						|
*>
 | 
						|
*>          If an eigenvector fails to converge, then that column of Z
 | 
						|
*>          contains the latest approximation to the eigenvector, and the
 | 
						|
*>          index of the eigenvector is returned in IFAIL.
 | 
						|
*>          Note: the user must ensure that at least max(1,M) columns are
 | 
						|
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | 
						|
*>          is not known in advance and an upper bound must be used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (8*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (5*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IFAIL
 | 
						|
*> \verbatim
 | 
						|
*>          IFAIL is INTEGER array, dimension (N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | 
						|
*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | 
						|
*>          indices of the eigenvectors that failed to converge.
 | 
						|
*>          If JOBZ = 'N', then IFAIL is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  DPPTRF or DSPEVX returned an error code:
 | 
						|
*>             <= N:  if INFO = i, DSPEVX failed to converge;
 | 
						|
*>                    i eigenvectors failed to converge.  Their indices
 | 
						|
*>                    are stored in array IFAIL.
 | 
						|
*>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
 | 
						|
*>                    minor of order i of B is not positive definite.
 | 
						|
*>                    The factorization of B could not be completed and
 | 
						|
*>                    no eigenvalues or eigenvectors were computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2015
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHEReigen
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
 | 
						|
     $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
 | 
						|
     $                   IFAIL, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.6.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2015
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, RANGE, UPLO
 | 
						|
      INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
 | 
						|
      DOUBLE PRECISION   ABSTOL, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IFAIL( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
 | 
						|
     $                   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            J
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DPPTRF, DSPEVX, DSPGST, DTPMV, DTPSV, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      ALLEIG = LSAME( RANGE, 'A' )
 | 
						|
      VALEIG = LSAME( RANGE, 'V' )
 | 
						|
      INDEIG = LSAME( RANGE, 'I' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE
 | 
						|
         IF( VALEIG ) THEN
 | 
						|
            IF( N.GT.0 .AND. VU.LE.VL ) THEN
 | 
						|
               INFO = -9
 | 
						|
            END IF
 | 
						|
         ELSE IF( INDEIG ) THEN
 | 
						|
            IF( IL.LT.1 ) THEN
 | 
						|
               INFO = -10
 | 
						|
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | 
						|
               INFO = -11
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
            INFO = -16
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSPGVX', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      M = 0
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form a Cholesky factorization of B.
 | 
						|
*
 | 
						|
      CALL DPPTRF( UPLO, N, BP, INFO )
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         INFO = N + INFO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Transform problem to standard eigenvalue problem and solve.
 | 
						|
*
 | 
						|
      CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | 
						|
      CALL DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
 | 
						|
     $             W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
*
 | 
						|
*        Backtransform eigenvectors to the original problem.
 | 
						|
*
 | 
						|
         IF( INFO.GT.0 )
 | 
						|
     $      M = INFO - 1
 | 
						|
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | 
						|
*           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
 | 
						|
*
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               TRANS = 'N'
 | 
						|
            ELSE
 | 
						|
               TRANS = 'T'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 10 J = 1, M
 | 
						|
               CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | 
						|
     $                     1 )
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           For B*A*x=(lambda)*x;
 | 
						|
*           backtransform eigenvectors: x = L*y or U**T*y
 | 
						|
*
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               TRANS = 'T'
 | 
						|
            ELSE
 | 
						|
               TRANS = 'N'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 20 J = 1, M
 | 
						|
               CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | 
						|
     $                     1 )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSPGVX
 | 
						|
*
 | 
						|
      END
 |