161 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLA_GBRPVGRW + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbrpvgrw.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbrpvgrw.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbrpvgrw.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       DOUBLE PRECISION FUNCTION DLA_GBRPVGRW( N, KL, KU, NCOLS, AB,
 | 
						|
*                                               LDAB, AFB, LDAFB )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            N, KL, KU, NCOLS, LDAB, LDAFB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLA_GBRPVGRW computes the reciprocal pivot growth factor
 | 
						|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | 
						|
*> much less than 1, the stability of the LU factorization of the
 | 
						|
*> (equilibrated) matrix A could be poor. This also means that the
 | 
						|
*> solution X, estimated condition numbers, and error bounds could be
 | 
						|
*> unreliable.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>     The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>     The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NCOLS
 | 
						|
*> \verbatim
 | 
						|
*>          NCOLS is INTEGER
 | 
						|
*>     The number of columns of the matrix A.  NCOLS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | 
						|
*>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 | 
						|
*>     The j-th column of A is stored in the j-th column of the
 | 
						|
*>     array AB as follows:
 | 
						|
*>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFB
 | 
						|
*> \verbatim
 | 
						|
*>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
 | 
						|
*>     Details of the LU factorization of the band matrix A, as
 | 
						|
*>     computed by DGBTRF.  U is stored as an upper triangular
 | 
						|
*>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
 | 
						|
*>     and the multipliers used during the factorization are stored
 | 
						|
*>     in rows KL+KU+2 to 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFB is INTEGER
 | 
						|
*>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup doubleGBcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      DOUBLE PRECISION FUNCTION DLA_GBRPVGRW( N, KL, KU, NCOLS, AB,
 | 
						|
     $                                        LDAB, AFB, LDAFB )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            N, KL, KU, NCOLS, LDAB, LDAFB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, KD
 | 
						|
      DOUBLE PRECISION   AMAX, UMAX, RPVGRW
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RPVGRW = 1.0D+0
 | 
						|
 | 
						|
      KD = KU + 1
 | 
						|
      DO J = 1, NCOLS
 | 
						|
         AMAX = 0.0D+0
 | 
						|
         UMAX = 0.0D+0
 | 
						|
         DO I = MAX( J-KU, 1 ), MIN( J+KL, N )
 | 
						|
            AMAX = MAX( ABS( AB( KD+I-J, J)), AMAX )
 | 
						|
         END DO
 | 
						|
         DO I = MAX( J-KU, 1 ), J
 | 
						|
            UMAX = MAX( ABS( AFB( KD+I-J, J ) ), UMAX )
 | 
						|
         END DO
 | 
						|
         IF ( UMAX /= 0.0D+0 ) THEN
 | 
						|
            RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | 
						|
         END IF
 | 
						|
      END DO
 | 
						|
      DLA_GBRPVGRW = RPVGRW
 | 
						|
      END
 |