407 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			407 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPSTF2 computes the Cholesky factorization with complete pivoting of complex Hermitian positive semidefinite matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPSTF2 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpstf2.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpstf2.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpstf2.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               TOL
 | 
						|
*       INTEGER            INFO, LDA, N, RANK
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       REAL               WORK( 2*N )
 | 
						|
*       INTEGER            PIV( N )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPSTF2 computes the Cholesky factorization with complete
 | 
						|
*> pivoting of a complex Hermitian positive semidefinite matrix A.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    P**T * A * P = U**H * U ,  if UPLO = 'U',
 | 
						|
*>    P**T * A * P = L  * L**H,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix and L is lower triangular, and
 | 
						|
*> P is stored as vector PIV.
 | 
						|
*>
 | 
						|
*> This algorithm does not attempt to check that A is positive
 | 
						|
*> semidefinite. This version of the algorithm calls level 2 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          n by n upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading n by n lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
*>          factorization as above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PIV
 | 
						|
*> \verbatim
 | 
						|
*>          PIV is INTEGER array, dimension (N)
 | 
						|
*>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The rank of A given by the number of steps the algorithm
 | 
						|
*>          completed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOL
 | 
						|
*> \verbatim
 | 
						|
*>          TOL is REAL
 | 
						|
*>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
 | 
						|
*>          will be used. The algorithm terminates at the (K-1)st step
 | 
						|
*>          if the pivot <= TOL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*N)
 | 
						|
*>          Work space.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          < 0: If INFO = -K, the K-th argument had an illegal value,
 | 
						|
*>          = 0: algorithm completed successfully, and
 | 
						|
*>          > 0: the matrix A is either rank deficient with computed rank
 | 
						|
*>               as returned in RANK, or is not positive semidefinite. See
 | 
						|
*>               Section 7 of LAPACK Working Note #161 for further
 | 
						|
*>               information.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2015
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.6.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2015
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               TOL
 | 
						|
      INTEGER            INFO, LDA, N, RANK
 | 
						|
      CHARACTER          UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
      REAL               WORK( 2*N )
 | 
						|
      INTEGER            PIV( N )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            CTEMP
 | 
						|
      REAL               AJJ, SSTOP, STEMP
 | 
						|
      INTEGER            I, ITEMP, J, PVT
 | 
						|
      LOGICAL            UPPER
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      LOGICAL            LSAME, SISNAN
 | 
						|
      EXTERNAL           SLAMCH, LSAME, SISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CLACGV, CSSCAL, CSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPSTF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Initialize PIV
 | 
						|
*
 | 
						|
      DO 100 I = 1, N
 | 
						|
         PIV( I ) = I
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
*     Compute stopping value
 | 
						|
*
 | 
						|
      DO 110 I = 1, N
 | 
						|
         WORK( I ) = REAL( A( I, I ) )
 | 
						|
  110 CONTINUE
 | 
						|
      PVT = MAXLOC( WORK( 1:N ), 1 )
 | 
						|
      AJJ = REAL ( A( PVT, PVT ) )
 | 
						|
      IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
 | 
						|
         RANK = 0
 | 
						|
         INFO = 1
 | 
						|
         GO TO 200
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute stopping value if not supplied
 | 
						|
*
 | 
						|
      IF( TOL.LT.ZERO ) THEN
 | 
						|
         SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
 | 
						|
      ELSE
 | 
						|
         SSTOP = TOL
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set first half of WORK to zero, holds dot products
 | 
						|
*
 | 
						|
      DO 120 I = 1, N
 | 
						|
         WORK( I ) = 0
 | 
						|
  120 CONTINUE
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization P**T * A * P = U**H * U
 | 
						|
*
 | 
						|
         DO 150 J = 1, N
 | 
						|
*
 | 
						|
*        Find pivot, test for exit, else swap rows and columns
 | 
						|
*        Update dot products, compute possible pivots which are
 | 
						|
*        stored in the second half of WORK
 | 
						|
*
 | 
						|
            DO 130 I = J, N
 | 
						|
*
 | 
						|
               IF( J.GT.1 ) THEN
 | 
						|
                  WORK( I ) = WORK( I ) + 
 | 
						|
     $                        REAL( CONJG( A( J-1, I ) )*
 | 
						|
     $                              A( J-1, I ) )
 | 
						|
               END IF
 | 
						|
               WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
 | 
						|
*
 | 
						|
  130       CONTINUE
 | 
						|
*
 | 
						|
            IF( J.GT.1 ) THEN
 | 
						|
               ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
 | 
						|
               PVT = ITEMP + J - 1
 | 
						|
               AJJ = WORK( N+PVT )
 | 
						|
               IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
 | 
						|
                  A( J, J ) = AJJ
 | 
						|
                  GO TO 190
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( J.NE.PVT ) THEN
 | 
						|
*
 | 
						|
*              Pivot OK, so can now swap pivot rows and columns
 | 
						|
*
 | 
						|
               A( PVT, PVT ) = A( J, J )
 | 
						|
               CALL CSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
 | 
						|
               IF( PVT.LT.N )
 | 
						|
     $            CALL CSWAP( N-PVT, A( J, PVT+1 ), LDA,
 | 
						|
     $                        A( PVT, PVT+1 ), LDA )
 | 
						|
               DO 140 I = J + 1, PVT - 1
 | 
						|
                  CTEMP = CONJG( A( J, I ) )
 | 
						|
                  A( J, I ) = CONJG( A( I, PVT ) )
 | 
						|
                  A( I, PVT ) = CTEMP
 | 
						|
  140          CONTINUE
 | 
						|
               A( J, PVT ) = CONJG( A( J, PVT ) )
 | 
						|
*
 | 
						|
*              Swap dot products and PIV
 | 
						|
*
 | 
						|
               STEMP = WORK( J )
 | 
						|
               WORK( J ) = WORK( PVT )
 | 
						|
               WORK( PVT ) = STEMP
 | 
						|
               ITEMP = PIV( PVT )
 | 
						|
               PIV( PVT ) = PIV( J )
 | 
						|
               PIV( J ) = ITEMP
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            A( J, J ) = AJJ
 | 
						|
*
 | 
						|
*           Compute elements J+1:N of row J
 | 
						|
*
 | 
						|
            IF( J.LT.N ) THEN
 | 
						|
               CALL CLACGV( J-1, A( 1, J ), 1 )
 | 
						|
               CALL CGEMV( 'Trans', J-1, N-J, -CONE, A( 1, J+1 ), LDA,
 | 
						|
     $                     A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
 | 
						|
               CALL CLACGV( J-1, A( 1, J ), 1 )
 | 
						|
               CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
  150    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization P**T * A * P = L * L**H
 | 
						|
*
 | 
						|
         DO 180 J = 1, N
 | 
						|
*
 | 
						|
*        Find pivot, test for exit, else swap rows and columns
 | 
						|
*        Update dot products, compute possible pivots which are
 | 
						|
*        stored in the second half of WORK
 | 
						|
*
 | 
						|
            DO 160 I = J, N
 | 
						|
*
 | 
						|
               IF( J.GT.1 ) THEN
 | 
						|
                  WORK( I ) = WORK( I ) + 
 | 
						|
     $                        REAL( CONJG( A( I, J-1 ) )*
 | 
						|
     $                              A( I, J-1 ) )
 | 
						|
               END IF
 | 
						|
               WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
 | 
						|
*
 | 
						|
  160       CONTINUE
 | 
						|
*
 | 
						|
            IF( J.GT.1 ) THEN
 | 
						|
               ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
 | 
						|
               PVT = ITEMP + J - 1
 | 
						|
               AJJ = WORK( N+PVT )
 | 
						|
               IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
 | 
						|
                  A( J, J ) = AJJ
 | 
						|
                  GO TO 190
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( J.NE.PVT ) THEN
 | 
						|
*
 | 
						|
*              Pivot OK, so can now swap pivot rows and columns
 | 
						|
*
 | 
						|
               A( PVT, PVT ) = A( J, J )
 | 
						|
               CALL CSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
 | 
						|
               IF( PVT.LT.N )
 | 
						|
     $            CALL CSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
 | 
						|
     $                        1 )
 | 
						|
               DO 170 I = J + 1, PVT - 1
 | 
						|
                  CTEMP = CONJG( A( I, J ) )
 | 
						|
                  A( I, J ) = CONJG( A( PVT, I ) )
 | 
						|
                  A( PVT, I ) = CTEMP
 | 
						|
  170          CONTINUE
 | 
						|
               A( PVT, J ) = CONJG( A( PVT, J ) )
 | 
						|
*
 | 
						|
*              Swap dot products and PIV
 | 
						|
*
 | 
						|
               STEMP = WORK( J )
 | 
						|
               WORK( J ) = WORK( PVT )
 | 
						|
               WORK( PVT ) = STEMP
 | 
						|
               ITEMP = PIV( PVT )
 | 
						|
               PIV( PVT ) = PIV( J )
 | 
						|
               PIV( J ) = ITEMP
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            A( J, J ) = AJJ
 | 
						|
*
 | 
						|
*           Compute elements J+1:N of column J
 | 
						|
*
 | 
						|
            IF( J.LT.N ) THEN
 | 
						|
               CALL CLACGV( J-1, A( J, 1 ), LDA )
 | 
						|
               CALL CGEMV( 'No Trans', N-J, J-1, -CONE, A( J+1, 1 ),
 | 
						|
     $                     LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
 | 
						|
               CALL CLACGV( J-1, A( J, 1 ), LDA )
 | 
						|
               CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
  180    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Ran to completion, A has full rank
 | 
						|
*
 | 
						|
      RANK = N
 | 
						|
*
 | 
						|
      GO TO 200
 | 
						|
  190 CONTINUE
 | 
						|
*
 | 
						|
*     Rank is number of steps completed.  Set INFO = 1 to signal
 | 
						|
*     that the factorization cannot be used to solve a system.
 | 
						|
*
 | 
						|
      RANK = J - 1
 | 
						|
      INFO = 1
 | 
						|
*
 | 
						|
  200 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPSTF2
 | 
						|
*
 | 
						|
      END
 |