772 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			772 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> CGELSS solves overdetermined or underdetermined systems for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGELSS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelss.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelss.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelss.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | 
						|
*                          WORK, LWORK, RWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
*       REAL               RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * ), S( * )
 | 
						|
*       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGELSS computes the minimum norm solution to a complex linear
 | 
						|
*> least squares problem:
 | 
						|
*>
 | 
						|
*> Minimize 2-norm(| b - A*x |).
 | 
						|
*>
 | 
						|
*> using the singular value decomposition (SVD) of A. A is an M-by-N
 | 
						|
*> matrix which may be rank-deficient.
 | 
						|
*>
 | 
						|
*> Several right hand side vectors b and solution vectors x can be
 | 
						|
*> handled in a single call; they are stored as the columns of the
 | 
						|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
 | 
						|
*> X.
 | 
						|
*>
 | 
						|
*> The effective rank of A is determined by treating as zero those
 | 
						|
*> singular values which are less than RCOND times the largest singular
 | 
						|
*> value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices B and X. NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the first min(m,n) rows of A are overwritten with
 | 
						|
*>          its right singular vectors, stored rowwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the M-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
 | 
						|
*>          If m >= n and RANK = n, the residual sum-of-squares for
 | 
						|
*>          the solution in the i-th column is given by the sum of
 | 
						|
*>          squares of the modulus of elements n+1:m in that column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension (min(M,N))
 | 
						|
*>          The singular values of A in decreasing order.
 | 
						|
*>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          RCOND is used to determine the effective rank of A.
 | 
						|
*>          Singular values S(i) <= RCOND*S(1) are treated as zero.
 | 
						|
*>          If RCOND < 0, machine precision is used instead.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The effective rank of A, i.e., the number of singular values
 | 
						|
*>          which are greater than RCOND*S(1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= 1, and also:
 | 
						|
*>          LWORK >=  2*min(M,N) + max(M,N,NRHS)
 | 
						|
*>          For good performance, LWORK should generally be larger.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (5*min(M,N))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  the algorithm for computing the SVD failed to converge;
 | 
						|
*>                if INFO = i, i off-diagonal elements of an intermediate
 | 
						|
*>                bidiagonal form did not converge to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexGEsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | 
						|
     $                   WORK, LWORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
      REAL               RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * ), S( * )
 | 
						|
      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
 | 
						|
     $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
 | 
						|
     $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
 | 
						|
      INTEGER            LWORK_CGEQRF, LWORK_CUNMQR, LWORK_CGEBRD,
 | 
						|
     $                   LWORK_CUNMBR, LWORK_CUNGBR, LWORK_CUNMLQ,
 | 
						|
     $                   LWORK_CGELQF
 | 
						|
      REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      COMPLEX            DUM( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CBDSQR, CCOPY, CGEBRD, CGELQF, CGEMM, CGEMV,
 | 
						|
     $                   CGEQRF, CLACPY, CLASCL, CLASET, CSRSCL, CUNGBR,
 | 
						|
     $                   CUNMBR, CUNMLQ, CUNMQR, SLABAD, SLASCL, SLASET,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               CLANGE, SLAMCH
 | 
						|
      EXTERNAL           ILAENV, CLANGE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      MINMN = MIN( M, N )
 | 
						|
      MAXMN = MAX( M, N )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       CWorkspace refers to complex workspace, and RWorkspace refers
 | 
						|
*       to real workspace. NB refers to the optimal block size for the
 | 
						|
*       immediately following subroutine, as returned by ILAENV.)
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         MINWRK = 1
 | 
						|
         MAXWRK = 1
 | 
						|
         IF( MINMN.GT.0 ) THEN
 | 
						|
            MM = M
 | 
						|
            MNTHR = ILAENV( 6, 'CGELSS', ' ', M, N, NRHS, -1 )
 | 
						|
            IF( M.GE.N .AND. M.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*              Path 1a - overdetermined, with many more rows than
 | 
						|
*                        columns
 | 
						|
*
 | 
						|
*              Compute space needed for CGEQRF
 | 
						|
               CALL CGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
 | 
						|
               LWORK_CGEQRF=DUM(1)
 | 
						|
*              Compute space needed for CUNMQR
 | 
						|
               CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
 | 
						|
     $                   LDB, DUM(1), -1, INFO )
 | 
						|
               LWORK_CUNMQR=DUM(1)
 | 
						|
               MM = N
 | 
						|
               MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'CGEQRF', ' ', M,
 | 
						|
     $                       N, -1, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'CUNMQR', 'LC',
 | 
						|
     $                       M, NRHS, N, -1 ) )
 | 
						|
            END IF
 | 
						|
            IF( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*              Path 1 - overdetermined or exactly determined
 | 
						|
*
 | 
						|
*              Compute space needed for CGEBRD
 | 
						|
               CALL CGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
 | 
						|
     $                      DUM(1), DUM(1), -1, INFO )
 | 
						|
               LWORK_CGEBRD=DUM(1)
 | 
						|
*              Compute space needed for CUNMBR
 | 
						|
               CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
 | 
						|
     $                B, LDB, DUM(1), -1, INFO )
 | 
						|
               LWORK_CUNMBR=DUM(1)
 | 
						|
*              Compute space needed for CUNGBR
 | 
						|
               CALL CUNGBR( 'P', N, N, N, A, LDA, DUM(1),
 | 
						|
     $                   DUM(1), -1, INFO )
 | 
						|
               LWORK_CUNGBR=DUM(1)
 | 
						|
*              Compute total workspace needed 
 | 
						|
               MAXWRK = MAX( MAXWRK, 2*N + LWORK_CGEBRD )
 | 
						|
               MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR )
 | 
						|
               MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR )
 | 
						|
               MAXWRK = MAX( MAXWRK, N*NRHS )
 | 
						|
               MINWRK = 2*N + MAX( NRHS, M )
 | 
						|
            END IF
 | 
						|
            IF( N.GT.M ) THEN
 | 
						|
               MINWRK = 2*M + MAX( NRHS, N )
 | 
						|
               IF( N.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*                 Path 2a - underdetermined, with many more columns
 | 
						|
*                 than rows
 | 
						|
*
 | 
						|
*                 Compute space needed for CGELQF
 | 
						|
                  CALL CGELQF( M, N, A, LDA, DUM(1), DUM(1),
 | 
						|
     $                -1, INFO )
 | 
						|
                  LWORK_CGELQF=DUM(1)
 | 
						|
*                 Compute space needed for CGEBRD
 | 
						|
                  CALL CGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
 | 
						|
     $                      DUM(1), DUM(1), -1, INFO )
 | 
						|
                  LWORK_CGEBRD=DUM(1)
 | 
						|
*                 Compute space needed for CUNMBR
 | 
						|
                  CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, 
 | 
						|
     $                DUM(1), B, LDB, DUM(1), -1, INFO )
 | 
						|
                  LWORK_CUNMBR=DUM(1)
 | 
						|
*                 Compute space needed for CUNGBR
 | 
						|
                  CALL CUNGBR( 'P', M, M, M, A, LDA, DUM(1),
 | 
						|
     $                   DUM(1), -1, INFO )
 | 
						|
                  LWORK_CUNGBR=DUM(1)
 | 
						|
*                 Compute space needed for CUNMLQ
 | 
						|
                  CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
 | 
						|
     $                 B, LDB, DUM(1), -1, INFO )
 | 
						|
                  LWORK_CUNMLQ=DUM(1)
 | 
						|
*                 Compute total workspace needed 
 | 
						|
                  MAXWRK = M + LWORK_CGELQF
 | 
						|
                  MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CGEBRD )
 | 
						|
                  MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CUNMBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CUNGBR )
 | 
						|
                  IF( NRHS.GT.1 ) THEN
 | 
						|
                     MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
 | 
						|
                  ELSE
 | 
						|
                     MAXWRK = MAX( MAXWRK, M*M + 2*M )
 | 
						|
                  END IF
 | 
						|
                  MAXWRK = MAX( MAXWRK, M + LWORK_CUNMLQ )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Path 2 - underdetermined
 | 
						|
*
 | 
						|
*                 Compute space needed for CGEBRD
 | 
						|
                  CALL CGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
 | 
						|
     $                      DUM(1), DUM(1), -1, INFO )
 | 
						|
                  LWORK_CGEBRD=DUM(1)
 | 
						|
*                 Compute space needed for CUNMBR
 | 
						|
                  CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA, 
 | 
						|
     $                DUM(1), B, LDB, DUM(1), -1, INFO )
 | 
						|
                  LWORK_CUNMBR=DUM(1)
 | 
						|
*                 Compute space needed for CUNGBR
 | 
						|
                  CALL CUNGBR( 'P', M, N, M, A, LDA, DUM(1),
 | 
						|
     $                   DUM(1), -1, INFO )
 | 
						|
                  LWORK_CUNGBR=DUM(1)
 | 
						|
                  MAXWRK = 2*M + LWORK_CGEBRD
 | 
						|
                  MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR )
 | 
						|
                  MAXWRK = MAX( MAXWRK, N*NRHS )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            MAXWRK = MAX( MINWRK, MAXWRK )
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
 | 
						|
     $      INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGELSS', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         RANK = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine parameters
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SFMIN = SLAMCH( 'S' )
 | 
						|
      SMLNUM = SFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
 | 
						|
      IASCL = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 1
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 2
 | 
						|
      ELSE IF( ANRM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Matrix all zero. Return zero solution.
 | 
						|
*
 | 
						|
         CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
 | 
						|
         CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
 | 
						|
         RANK = 0
 | 
						|
         GO TO 70
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
 | 
						|
      IBSCL = 0
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 1
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Overdetermined case
 | 
						|
*
 | 
						|
      IF( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Path 1 - overdetermined or exactly determined
 | 
						|
*
 | 
						|
         MM = M
 | 
						|
         IF( M.GE.MNTHR ) THEN
 | 
						|
*
 | 
						|
*           Path 1a - overdetermined, with many more rows than columns
 | 
						|
*
 | 
						|
            MM = N
 | 
						|
            ITAU = 1
 | 
						|
            IWORK = ITAU + N
 | 
						|
*
 | 
						|
*           Compute A=Q*R
 | 
						|
*           (CWorkspace: need 2*N, prefer N+N*NB)
 | 
						|
*           (RWorkspace: none)
 | 
						|
*
 | 
						|
            CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | 
						|
     $                   LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*           Multiply B by transpose(Q)
 | 
						|
*           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
 | 
						|
*           (RWorkspace: none)
 | 
						|
*
 | 
						|
            CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
 | 
						|
     $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*           Zero out below R
 | 
						|
*
 | 
						|
            IF( N.GT.1 )
 | 
						|
     $         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
 | 
						|
     $                      LDA )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = 1
 | 
						|
         ITAUP = ITAUQ + N
 | 
						|
         IWORK = ITAUP + N
 | 
						|
*
 | 
						|
*        Bidiagonalize R in A
 | 
						|
*        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
 | 
						|
*        (RWorkspace: need N)
 | 
						|
*
 | 
						|
         CALL CGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | 
						|
     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors of R
 | 
						|
*        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
 | 
						|
     $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Generate right bidiagonalizing vectors of R in A
 | 
						|
*        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | 
						|
     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
         IRWORK = IE + N
 | 
						|
*
 | 
						|
*        Perform bidiagonal QR iteration
 | 
						|
*          multiply B by transpose of left singular vectors
 | 
						|
*          compute right singular vectors in A
 | 
						|
*        (CWorkspace: none)
 | 
						|
*        (RWorkspace: need BDSPAC)
 | 
						|
*
 | 
						|
         CALL CBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
 | 
						|
     $                1, B, LDB, RWORK( IRWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Multiply B by reciprocals of singular values
 | 
						|
*
 | 
						|
         THR = MAX( RCOND*S( 1 ), SFMIN )
 | 
						|
         IF( RCOND.LT.ZERO )
 | 
						|
     $      THR = MAX( EPS*S( 1 ), SFMIN )
 | 
						|
         RANK = 0
 | 
						|
         DO 10 I = 1, N
 | 
						|
            IF( S( I ).GT.THR ) THEN
 | 
						|
               CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | 
						|
               RANK = RANK + 1
 | 
						|
            ELSE
 | 
						|
               CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        Multiply B by right singular vectors
 | 
						|
*        (CWorkspace: need N, prefer N*NRHS)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
 | 
						|
            CALL CGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
 | 
						|
     $                  CZERO, WORK, LDB )
 | 
						|
            CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
 | 
						|
         ELSE IF( NRHS.GT.1 ) THEN
 | 
						|
            CHUNK = LWORK / N
 | 
						|
            DO 20 I = 1, NRHS, CHUNK
 | 
						|
               BL = MIN( NRHS-I+1, CHUNK )
 | 
						|
               CALL CGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
 | 
						|
     $                     LDB, CZERO, WORK, N )
 | 
						|
               CALL CLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            CALL CGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
 | 
						|
            CALL CCOPY( N, WORK, 1, B, 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
 | 
						|
     $          THEN
 | 
						|
*
 | 
						|
*        Underdetermined case, M much less than N
 | 
						|
*
 | 
						|
*        Path 2a - underdetermined, with many more columns than rows
 | 
						|
*        and sufficient workspace for an efficient algorithm
 | 
						|
*
 | 
						|
         LDWORK = M
 | 
						|
         IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
 | 
						|
     $      LDWORK = LDA
 | 
						|
         ITAU = 1
 | 
						|
         IWORK = M + 1
 | 
						|
*
 | 
						|
*        Compute A=L*Q
 | 
						|
*        (CWorkspace: need 2*M, prefer M+M*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | 
						|
     $                LWORK-IWORK+1, INFO )
 | 
						|
         IL = IWORK
 | 
						|
*
 | 
						|
*        Copy L to WORK(IL), zeroing out above it
 | 
						|
*
 | 
						|
         CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
 | 
						|
         CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
 | 
						|
     $                LDWORK )
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = IL + LDWORK*M
 | 
						|
         ITAUP = ITAUQ + M
 | 
						|
         IWORK = ITAUP + M
 | 
						|
*
 | 
						|
*        Bidiagonalize L in WORK(IL)
 | 
						|
*        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
 | 
						|
*        (RWorkspace: need M)
 | 
						|
*
 | 
						|
         CALL CGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
 | 
						|
     $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
 | 
						|
     $                LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors of L
 | 
						|
*        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
 | 
						|
     $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
 | 
						|
     $                LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Generate right bidiagonalizing vectors of R in WORK(IL)
 | 
						|
*        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
 | 
						|
     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
         IRWORK = IE + M
 | 
						|
*
 | 
						|
*        Perform bidiagonal QR iteration, computing right singular
 | 
						|
*        vectors of L in WORK(IL) and multiplying B by transpose of
 | 
						|
*        left singular vectors
 | 
						|
*        (CWorkspace: need M*M)
 | 
						|
*        (RWorkspace: need BDSPAC)
 | 
						|
*
 | 
						|
         CALL CBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
 | 
						|
     $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Multiply B by reciprocals of singular values
 | 
						|
*
 | 
						|
         THR = MAX( RCOND*S( 1 ), SFMIN )
 | 
						|
         IF( RCOND.LT.ZERO )
 | 
						|
     $      THR = MAX( EPS*S( 1 ), SFMIN )
 | 
						|
         RANK = 0
 | 
						|
         DO 30 I = 1, M
 | 
						|
            IF( S( I ).GT.THR ) THEN
 | 
						|
               CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | 
						|
               RANK = RANK + 1
 | 
						|
            ELSE
 | 
						|
               CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
         IWORK = IL + M*LDWORK
 | 
						|
*
 | 
						|
*        Multiply B by right singular vectors of L in WORK(IL)
 | 
						|
*        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
 | 
						|
            CALL CGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
 | 
						|
     $                  B, LDB, CZERO, WORK( IWORK ), LDB )
 | 
						|
            CALL CLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
 | 
						|
         ELSE IF( NRHS.GT.1 ) THEN
 | 
						|
            CHUNK = ( LWORK-IWORK+1 ) / M
 | 
						|
            DO 40 I = 1, NRHS, CHUNK
 | 
						|
               BL = MIN( NRHS-I+1, CHUNK )
 | 
						|
               CALL CGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
 | 
						|
     $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
 | 
						|
               CALL CLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
 | 
						|
     $                      LDB )
 | 
						|
   40       CONTINUE
 | 
						|
         ELSE
 | 
						|
            CALL CGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
 | 
						|
     $                  1, CZERO, WORK( IWORK ), 1 )
 | 
						|
            CALL CCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Zero out below first M rows of B
 | 
						|
*
 | 
						|
         CALL CLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
 | 
						|
         IWORK = ITAU + M
 | 
						|
*
 | 
						|
*        Multiply transpose(Q) by B
 | 
						|
*        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
 | 
						|
     $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Path 2 - remaining underdetermined cases
 | 
						|
*
 | 
						|
         IE = 1
 | 
						|
         ITAUQ = 1
 | 
						|
         ITAUP = ITAUQ + M
 | 
						|
         IWORK = ITAUP + M
 | 
						|
*
 | 
						|
*        Bidiagonalize A
 | 
						|
*        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
 | 
						|
*        (RWorkspace: need N)
 | 
						|
*
 | 
						|
         CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | 
						|
     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Multiply B by transpose of left bidiagonalizing vectors
 | 
						|
*        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
 | 
						|
     $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
*
 | 
						|
*        Generate right bidiagonalizing vectors in A
 | 
						|
*        (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
 | 
						|
     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | 
						|
         IRWORK = IE + M
 | 
						|
*
 | 
						|
*        Perform bidiagonal QR iteration,
 | 
						|
*           computing right singular vectors of A in A and
 | 
						|
*           multiplying B by transpose of left singular vectors
 | 
						|
*        (CWorkspace: none)
 | 
						|
*        (RWorkspace: need BDSPAC)
 | 
						|
*
 | 
						|
         CALL CBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
 | 
						|
     $                1, B, LDB, RWORK( IRWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Multiply B by reciprocals of singular values
 | 
						|
*
 | 
						|
         THR = MAX( RCOND*S( 1 ), SFMIN )
 | 
						|
         IF( RCOND.LT.ZERO )
 | 
						|
     $      THR = MAX( EPS*S( 1 ), SFMIN )
 | 
						|
         RANK = 0
 | 
						|
         DO 50 I = 1, M
 | 
						|
            IF( S( I ).GT.THR ) THEN
 | 
						|
               CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | 
						|
               RANK = RANK + 1
 | 
						|
            ELSE
 | 
						|
               CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*        Multiply B by right singular vectors of A
 | 
						|
*        (CWorkspace: need N, prefer N*NRHS)
 | 
						|
*        (RWorkspace: none)
 | 
						|
*
 | 
						|
         IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
 | 
						|
            CALL CGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
 | 
						|
     $                  CZERO, WORK, LDB )
 | 
						|
            CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
 | 
						|
         ELSE IF( NRHS.GT.1 ) THEN
 | 
						|
            CHUNK = LWORK / N
 | 
						|
            DO 60 I = 1, NRHS, CHUNK
 | 
						|
               BL = MIN( NRHS-I+1, CHUNK )
 | 
						|
               CALL CGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
 | 
						|
     $                     LDB, CZERO, WORK, N )
 | 
						|
               CALL CLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            CALL CGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
 | 
						|
            CALL CCOPY( N, WORK, 1, B, 1 )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( IASCL.EQ.1 ) THEN
 | 
						|
         CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( IASCL.EQ.2 ) THEN
 | 
						|
         CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
      IF( IBSCL.EQ.1 ) THEN
 | 
						|
         CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      ELSE IF( IBSCL.EQ.2 ) THEN
 | 
						|
         CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      END IF
 | 
						|
   70 CONTINUE
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGELSS
 | 
						|
*
 | 
						|
      END
 |