371 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGBMV
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL ALPHA,BETA
 | 
						|
*       INTEGER INCX,INCY,KL,KU,LDA,M,N
 | 
						|
*       CHARACTER TRANS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL A(LDA,*),X(*),Y(*)
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGBMV  performs one of the matrix-vector operations
 | 
						|
*>
 | 
						|
*>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, x and y are vectors and A is an
 | 
						|
*> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>           On entry, TRANS specifies the operation to be performed as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 | 
						|
*>
 | 
						|
*>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
 | 
						|
*>
 | 
						|
*>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           On entry, M specifies the number of rows of the matrix A.
 | 
						|
*>           M must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the number of columns of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>           On entry, KL specifies the number of sub-diagonals of the
 | 
						|
*>           matrix A. KL must satisfy  0 .le. KL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>           On entry, KU specifies the number of super-diagonals of the
 | 
						|
*>           matrix A. KU must satisfy  0 .le. KU.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array of DIMENSION ( LDA, n ).
 | 
						|
*>           Before entry, the leading ( kl + ku + 1 ) by n part of the
 | 
						|
*>           array A must contain the matrix of coefficients, supplied
 | 
						|
*>           column by column, with the leading diagonal of the matrix in
 | 
						|
*>           row ( ku + 1 ) of the array, the first super-diagonal
 | 
						|
*>           starting at position 2 in row ku, the first sub-diagonal
 | 
						|
*>           starting at position 1 in row ( ku + 2 ), and so on.
 | 
						|
*>           Elements in the array A that do not correspond to elements
 | 
						|
*>           in the band matrix (such as the top left ku by ku triangle)
 | 
						|
*>           are not referenced.
 | 
						|
*>           The following program segment will transfer a band matrix
 | 
						|
*>           from conventional full matrix storage to band storage:
 | 
						|
*>
 | 
						|
*>                 DO 20, J = 1, N
 | 
						|
*>                    K = KU + 1 - J
 | 
						|
*>                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | 
						|
*>                       A( K + I, J ) = matrix( I, J )
 | 
						|
*>              10    CONTINUE
 | 
						|
*>              20 CONTINUE
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the calling (sub) program. LDA must be at least
 | 
						|
*>           ( kl + ku + 1 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array of DIMENSION at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | 
						|
*>           and at least
 | 
						|
*>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | 
						|
*>           Before entry, the incremented array X must contain the
 | 
						|
*>           vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL
 | 
						|
*>           On entry, BETA specifies the scalar beta. When BETA is
 | 
						|
*>           supplied as zero then Y need not be set on input.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is REAL array of DIMENSION at least
 | 
						|
*>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | 
						|
*>           and at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | 
						|
*>           Before entry, the incremented array Y must contain the
 | 
						|
*>           vector y. On exit, Y is overwritten by the updated vector y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCY
 | 
						|
*> \verbatim
 | 
						|
*>          INCY is INTEGER
 | 
						|
*>           On entry, INCY specifies the increment for the elements of
 | 
						|
*>           Y. INCY must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2015
 | 
						|
*
 | 
						|
*> \ingroup single_blas_level2
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 2 Blas routine.
 | 
						|
*>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | 
						|
*>
 | 
						|
*>  -- Written on 22-October-1986.
 | 
						|
*>     Jack Dongarra, Argonne National Lab.
 | 
						|
*>     Jeremy Du Croz, Nag Central Office.
 | 
						|
*>     Sven Hammarling, Nag Central Office.
 | 
						|
*>     Richard Hanson, Sandia National Labs.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level2 routine (version 3.6.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2015
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL ALPHA,BETA
 | 
						|
      INTEGER INCX,INCY,KL,KU,LDA,M,N
 | 
						|
      CHARACTER TRANS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL A(LDA,*),X(*),Y(*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL ONE,ZERO
 | 
						|
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL TEMP
 | 
						|
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC MAX,MIN
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
 | 
						|
     +    .NOT.LSAME(TRANS,'C')) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF (M.LT.0) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 3
 | 
						|
      ELSE IF (KL.LT.0) THEN
 | 
						|
          INFO = 4
 | 
						|
      ELSE IF (KU.LT.0) THEN
 | 
						|
          INFO = 5
 | 
						|
      ELSE IF (LDA.LT. (KL+KU+1)) THEN
 | 
						|
          INFO = 8
 | 
						|
      ELSE IF (INCX.EQ.0) THEN
 | 
						|
          INFO = 10
 | 
						|
      ELSE IF (INCY.EQ.0) THEN
 | 
						|
          INFO = 13
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('SGBMV ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | 
						|
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | 
						|
*
 | 
						|
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | 
						|
*     up the start points in  X  and  Y.
 | 
						|
*
 | 
						|
      IF (LSAME(TRANS,'N')) THEN
 | 
						|
          LENX = N
 | 
						|
          LENY = M
 | 
						|
      ELSE
 | 
						|
          LENX = M
 | 
						|
          LENY = N
 | 
						|
      END IF
 | 
						|
      IF (INCX.GT.0) THEN
 | 
						|
          KX = 1
 | 
						|
      ELSE
 | 
						|
          KX = 1 - (LENX-1)*INCX
 | 
						|
      END IF
 | 
						|
      IF (INCY.GT.0) THEN
 | 
						|
          KY = 1
 | 
						|
      ELSE
 | 
						|
          KY = 1 - (LENY-1)*INCY
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through the band part of A.
 | 
						|
*
 | 
						|
*     First form  y := beta*y.
 | 
						|
*
 | 
						|
      IF (BETA.NE.ONE) THEN
 | 
						|
          IF (INCY.EQ.1) THEN
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 10 I = 1,LENY
 | 
						|
                      Y(I) = ZERO
 | 
						|
   10             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 20 I = 1,LENY
 | 
						|
                      Y(I) = BETA*Y(I)
 | 
						|
   20             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
              IY = KY
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 30 I = 1,LENY
 | 
						|
                      Y(IY) = ZERO
 | 
						|
                      IY = IY + INCY
 | 
						|
   30             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 40 I = 1,LENY
 | 
						|
                      Y(IY) = BETA*Y(IY)
 | 
						|
                      IY = IY + INCY
 | 
						|
   40             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
      IF (ALPHA.EQ.ZERO) RETURN
 | 
						|
      KUP1 = KU + 1
 | 
						|
      IF (LSAME(TRANS,'N')) THEN
 | 
						|
*
 | 
						|
*        Form  y := alpha*A*x + y.
 | 
						|
*
 | 
						|
          JX = KX
 | 
						|
          IF (INCY.EQ.1) THEN
 | 
						|
              DO 60 J = 1,N
 | 
						|
                  TEMP = ALPHA*X(JX)
 | 
						|
                  K = KUP1 - J
 | 
						|
                  DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
 | 
						|
                      Y(I) = Y(I) + TEMP*A(K+I,J)
 | 
						|
   50             CONTINUE
 | 
						|
                  JX = JX + INCX
 | 
						|
   60         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 80 J = 1,N
 | 
						|
                  TEMP = ALPHA*X(JX)
 | 
						|
                  IY = KY
 | 
						|
                  K = KUP1 - J
 | 
						|
                  DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
 | 
						|
                      Y(IY) = Y(IY) + TEMP*A(K+I,J)
 | 
						|
                      IY = IY + INCY
 | 
						|
   70             CONTINUE
 | 
						|
                  JX = JX + INCX
 | 
						|
                  IF (J.GT.KU) KY = KY + INCY
 | 
						|
   80         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  y := alpha*A**T*x + y.
 | 
						|
*
 | 
						|
          JY = KY
 | 
						|
          IF (INCX.EQ.1) THEN
 | 
						|
              DO 100 J = 1,N
 | 
						|
                  TEMP = ZERO
 | 
						|
                  K = KUP1 - J
 | 
						|
                  DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
 | 
						|
                      TEMP = TEMP + A(K+I,J)*X(I)
 | 
						|
   90             CONTINUE
 | 
						|
                  Y(JY) = Y(JY) + ALPHA*TEMP
 | 
						|
                  JY = JY + INCY
 | 
						|
  100         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 120 J = 1,N
 | 
						|
                  TEMP = ZERO
 | 
						|
                  IX = KX
 | 
						|
                  K = KUP1 - J
 | 
						|
                  DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
 | 
						|
                      TEMP = TEMP + A(K+I,J)*X(IX)
 | 
						|
                      IX = IX + INCX
 | 
						|
  110             CONTINUE
 | 
						|
                  Y(JY) = Y(JY) + ALPHA*TEMP
 | 
						|
                  JY = JY + INCY
 | 
						|
                  IF (J.GT.KU) KX = KX + INCX
 | 
						|
  120         CONTINUE
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGBMV .
 | 
						|
*
 | 
						|
      END
 |