257 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			257 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZUNGTR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZUNGTR + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungtr.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungtr.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungtr.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZUNGTR generates a complex unitary matrix Q which is defined as the
 | 
						|
*> product of n-1 elementary reflectors of order N, as returned by
 | 
						|
*> ZHETRD:
 | 
						|
*>
 | 
						|
*> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
 | 
						|
*>
 | 
						|
*> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U': Upper triangle of A contains elementary reflectors
 | 
						|
*>                 from ZHETRD;
 | 
						|
*>          = 'L': Lower triangle of A contains elementary reflectors
 | 
						|
*>                 from ZHETRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix Q. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          On entry, the vectors which define the elementary reflectors,
 | 
						|
*>          as returned by ZHETRD.
 | 
						|
*>          On exit, the N-by-N unitary matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by ZHETRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= N-1.
 | 
						|
*>          For optimum performance LWORK >= (N-1)*NB, where NB is
 | 
						|
*>          the optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, UPPER
 | 
						|
      INTEGER            I, IINFO, J, LWKOPT, NB
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZUNGQL, ZUNGQR
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( UPPER ) THEN
 | 
						|
            NB = ILAENV( 1, 'ZUNGQL', ' ', N-1, N-1, N-1, -1 )
 | 
						|
         ELSE
 | 
						|
            NB = ILAENV( 1, 'ZUNGQR', ' ', N-1, N-1, N-1, -1 )
 | 
						|
         END IF
 | 
						|
         LWKOPT = MAX( 1, N-1 )*NB
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZUNGTR', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Q was determined by a call to ZHETRD with UPLO = 'U'
 | 
						|
*
 | 
						|
*        Shift the vectors which define the elementary reflectors one
 | 
						|
*        column to the left, and set the last row and column of Q to
 | 
						|
*        those of the unit matrix
 | 
						|
*
 | 
						|
         DO 20 J = 1, N - 1
 | 
						|
            DO 10 I = 1, J - 1
 | 
						|
               A( I, J ) = A( I, J+1 )
 | 
						|
   10       CONTINUE
 | 
						|
            A( N, J ) = ZERO
 | 
						|
   20    CONTINUE
 | 
						|
         DO 30 I = 1, N - 1
 | 
						|
            A( I, N ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
         A( N, N ) = ONE
 | 
						|
*
 | 
						|
*        Generate Q(1:n-1,1:n-1)
 | 
						|
*
 | 
						|
         CALL ZUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Q was determined by a call to ZHETRD with UPLO = 'L'.
 | 
						|
*
 | 
						|
*        Shift the vectors which define the elementary reflectors one
 | 
						|
*        column to the right, and set the first row and column of Q to
 | 
						|
*        those of the unit matrix
 | 
						|
*
 | 
						|
         DO 50 J = N, 2, -1
 | 
						|
            A( 1, J ) = ZERO
 | 
						|
            DO 40 I = J + 1, N
 | 
						|
               A( I, J ) = A( I, J-1 )
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
         A( 1, 1 ) = ONE
 | 
						|
         DO 60 I = 2, N
 | 
						|
            A( I, 1 ) = ZERO
 | 
						|
   60    CONTINUE
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Generate Q(2:n,2:n)
 | 
						|
*
 | 
						|
            CALL ZUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
 | 
						|
     $                   LWORK, IINFO )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZUNGTR
 | 
						|
*
 | 
						|
      END
 |