270 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZPBTF2 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtf2.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtf2.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtf2.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, KD, LDAB, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         AB( LDAB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPBTF2 computes the Cholesky factorization of a complex Hermitian
 | 
						|
*> positive definite band matrix A.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = U**H * U ,  if UPLO = 'U', or
 | 
						|
*>    A = L  * L**H,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix, U**H is the conjugate transpose
 | 
						|
*> of U, and L is lower triangular.
 | 
						|
*>
 | 
						|
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX*16 array, dimension (LDAB,N)
 | 
						|
*>          On entry, the upper or lower triangle of the Hermitian band
 | 
						|
*>          matrix A, stored in the first KD+1 rows of the array.  The
 | 
						|
*>          j-th column of A is stored in the j-th column of the array AB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the triangular factor U or L from the
 | 
						|
*>          Cholesky factorization A = U**H *U or A = L*L**H of the band
 | 
						|
*>          matrix A, in the same storage format as A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KD+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = k, the leading minor of order k is not
 | 
						|
*>               positive definite, and the factorization could not be
 | 
						|
*>               completed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The band storage scheme is illustrated by the following example, when
 | 
						|
*>  N = 6, KD = 2, and UPLO = 'U':
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
 | 
						|
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | 
						|
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | 
						|
*>
 | 
						|
*>  Similarly, if UPLO = 'L' the format of A is as follows:
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
 | 
						|
*>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
 | 
						|
*>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
 | 
						|
*>
 | 
						|
*>  Array elements marked * are not used by the routine.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, KD, LDAB, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         AB( LDAB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, KLD, KN
 | 
						|
      DOUBLE PRECISION   AJJ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KD.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDAB.LT.KD+1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZPBTF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      KLD = MAX( 1, LDAB-1 )
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization A = U**H * U.
 | 
						|
*
 | 
						|
         DO 10 J = 1, N
 | 
						|
*
 | 
						|
*           Compute U(J,J) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = DBLE( AB( KD+1, J ) )
 | 
						|
            IF( AJJ.LE.ZERO ) THEN
 | 
						|
               AB( KD+1, J ) = AJJ
 | 
						|
               GO TO 30
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            AB( KD+1, J ) = AJJ
 | 
						|
*
 | 
						|
*           Compute elements J+1:J+KN of row J and update the
 | 
						|
*           trailing submatrix within the band.
 | 
						|
*
 | 
						|
            KN = MIN( KD, N-J )
 | 
						|
            IF( KN.GT.0 ) THEN
 | 
						|
               CALL ZDSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
 | 
						|
               CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
 | 
						|
               CALL ZHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
 | 
						|
     $                    AB( KD+1, J+1 ), KLD )
 | 
						|
               CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization A = L*L**H.
 | 
						|
*
 | 
						|
         DO 20 J = 1, N
 | 
						|
*
 | 
						|
*           Compute L(J,J) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = DBLE( AB( 1, J ) )
 | 
						|
            IF( AJJ.LE.ZERO ) THEN
 | 
						|
               AB( 1, J ) = AJJ
 | 
						|
               GO TO 30
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            AB( 1, J ) = AJJ
 | 
						|
*
 | 
						|
*           Compute elements J+1:J+KN of column J and update the
 | 
						|
*           trailing submatrix within the band.
 | 
						|
*
 | 
						|
            KN = MIN( KD, N-J )
 | 
						|
            IF( KN.GT.0 ) THEN
 | 
						|
               CALL ZDSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
 | 
						|
               CALL ZHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
 | 
						|
     $                    AB( 1, J+1 ), KLD )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      INFO = J
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPBTF2
 | 
						|
*
 | 
						|
      END
 |