1079 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1079 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGSVJ0 pre-processor for the routine sgesvj.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGSVJ0 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgsvj0.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgsvj0.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgsvj0.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 | 
						|
*                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 | 
						|
*       REAL               EPS, SFMIN, TOL
 | 
						|
*       CHARACTER*1        JOBV
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
 | 
						|
*      $                   WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
 | 
						|
*> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
 | 
						|
*> it does not check convergence (stopping criterion). Few tuning
 | 
						|
*> parameters (marked by [TP]) are available for the implementer.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBV
 | 
						|
*> \verbatim
 | 
						|
*>          JOBV is CHARACTER*1
 | 
						|
*>          Specifies whether the output from this procedure is used
 | 
						|
*>          to compute the matrix V:
 | 
						|
*>          = 'V': the product of the Jacobi rotations is accumulated
 | 
						|
*>                 by postmulyiplying the N-by-N array V.
 | 
						|
*>                (See the description of V.)
 | 
						|
*>          = 'A': the product of the Jacobi rotations is accumulated
 | 
						|
*>                 by postmulyiplying the MV-by-N array V.
 | 
						|
*>                (See the descriptions of MV and V.)
 | 
						|
*>          = 'N': the Jacobi rotations are not accumulated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the input matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the input matrix A.
 | 
						|
*>          M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, M-by-N matrix A, such that A*diag(D) represents
 | 
						|
*>          the input matrix.
 | 
						|
*>          On exit,
 | 
						|
*>          A_onexit * D_onexit represents the input matrix A*diag(D)
 | 
						|
*>          post-multiplied by a sequence of Jacobi rotations, where the
 | 
						|
*>          rotation threshold and the total number of sweeps are given in
 | 
						|
*>          TOL and NSWEEP, respectively.
 | 
						|
*>          (See the descriptions of D, TOL and NSWEEP.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The array D accumulates the scaling factors from the fast scaled
 | 
						|
*>          Jacobi rotations.
 | 
						|
*>          On entry, A*diag(D) represents the input matrix.
 | 
						|
*>          On exit, A_onexit*diag(D_onexit) represents the input matrix
 | 
						|
*>          post-multiplied by a sequence of Jacobi rotations, where the
 | 
						|
*>          rotation threshold and the total number of sweeps are given in
 | 
						|
*>          TOL and NSWEEP, respectively.
 | 
						|
*>          (See the descriptions of A, TOL and NSWEEP.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] SVA
 | 
						|
*> \verbatim
 | 
						|
*>          SVA is REAL array, dimension (N)
 | 
						|
*>          On entry, SVA contains the Euclidean norms of the columns of
 | 
						|
*>          the matrix A*diag(D).
 | 
						|
*>          On exit, SVA contains the Euclidean norms of the columns of
 | 
						|
*>          the matrix onexit*diag(D_onexit).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MV
 | 
						|
*> \verbatim
 | 
						|
*>          MV is INTEGER
 | 
						|
*>          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
 | 
						|
*>                           sequence of Jacobi rotations.
 | 
						|
*>          If JOBV = 'N',   then MV is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is REAL array, dimension (LDV,N)
 | 
						|
*>          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
 | 
						|
*>                           sequence of Jacobi rotations.
 | 
						|
*>          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
 | 
						|
*>                           sequence of Jacobi rotations.
 | 
						|
*>          If JOBV = 'N',   then V is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V,  LDV >= 1.
 | 
						|
*>          If JOBV = 'V', LDV .GE. N.
 | 
						|
*>          If JOBV = 'A', LDV .GE. MV.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] EPS
 | 
						|
*> \verbatim
 | 
						|
*>          EPS is REAL
 | 
						|
*>          EPS = SLAMCH('Epsilon')
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SFMIN
 | 
						|
*> \verbatim
 | 
						|
*>          SFMIN is REAL
 | 
						|
*>          SFMIN = SLAMCH('Safe Minimum')
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOL
 | 
						|
*> \verbatim
 | 
						|
*>          TOL is REAL
 | 
						|
*>          TOL is the threshold for Jacobi rotations. For a pair
 | 
						|
*>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
 | 
						|
*>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NSWEEP
 | 
						|
*> \verbatim
 | 
						|
*>          NSWEEP is INTEGER
 | 
						|
*>          NSWEEP is the number of sweeps of Jacobi rotations to be
 | 
						|
*>          performed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          LWORK is the dimension of WORK. LWORK .GE. M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0 : successful exit.
 | 
						|
*>          < 0 : if INFO = -i, then the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> SGSVJ0 is used just to enable SGESVJ to call a simplified version of
 | 
						|
*> itself to work on a submatrix of the original matrix.
 | 
						|
*>
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
 | 
						|
*>
 | 
						|
*> \par Bugs, Examples and Comments:
 | 
						|
*  =================================
 | 
						|
*>
 | 
						|
*> Please report all bugs and send interesting test examples and comments to
 | 
						|
*> drmac@math.hr. Thank you.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 | 
						|
     $                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 | 
						|
      REAL               EPS, SFMIN, TOL
 | 
						|
      CHARACTER*1        JOBV
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
 | 
						|
     $                   WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Parameters ..
 | 
						|
      REAL               ZERO, HALF, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
 | 
						|
     $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
 | 
						|
     $                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
 | 
						|
     $                   THSIGN
 | 
						|
      INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
 | 
						|
     $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
 | 
						|
     $                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
 | 
						|
      LOGICAL            APPLV, ROTOK, RSVEC
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               FASTR( 5 )
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AMAX1, FLOAT, MIN0, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SDOT, SNRM2
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           ISAMAX, LSAME, SDOT, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      APPLV = LSAME( JOBV, 'A' )
 | 
						|
      RSVEC = LSAME( JOBV, 'V' )
 | 
						|
      IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.M ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
 | 
						|
     $         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( TOL.LE.EPS ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( NSWEEP.LT.0 ) THEN
 | 
						|
         INFO = -14
 | 
						|
      ELSE IF( LWORK.LT.M ) THEN
 | 
						|
         INFO = -16
 | 
						|
      ELSE
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     #:(
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGSVJ0', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( RSVEC ) THEN
 | 
						|
         MVL = N
 | 
						|
      ELSE IF( APPLV ) THEN
 | 
						|
         MVL = MV
 | 
						|
      END IF
 | 
						|
      RSVEC = RSVEC .OR. APPLV
 | 
						|
 | 
						|
      ROOTEPS = SQRT( EPS )
 | 
						|
      ROOTSFMIN = SQRT( SFMIN )
 | 
						|
      SMALL = SFMIN / EPS
 | 
						|
      BIG = ONE / SFMIN
 | 
						|
      ROOTBIG = ONE / ROOTSFMIN
 | 
						|
      BIGTHETA = ONE / ROOTEPS
 | 
						|
      ROOTTOL = SQRT( TOL )
 | 
						|
*
 | 
						|
*     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
 | 
						|
*
 | 
						|
      EMPTSW = ( N*( N-1 ) ) / 2
 | 
						|
      NOTROT = 0
 | 
						|
      FASTR( 1 ) = ZERO
 | 
						|
*
 | 
						|
*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | 
						|
*
 | 
						|
 | 
						|
      SWBAND = 0
 | 
						|
*[TP] SWBAND is a tuning parameter. It is meaningful and effective
 | 
						|
*     if SGESVJ is used as a computational routine in the preconditioned
 | 
						|
*     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
 | 
						|
*     ......
 | 
						|
 | 
						|
      KBL = MIN0( 8, N )
 | 
						|
*[TP] KBL is a tuning parameter that defines the tile size in the
 | 
						|
*     tiling of the p-q loops of pivot pairs. In general, an optimal
 | 
						|
*     value of KBL depends on the matrix dimensions and on the
 | 
						|
*     parameters of the computer's memory.
 | 
						|
*
 | 
						|
      NBL = N / KBL
 | 
						|
      IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
 | 
						|
 | 
						|
      BLSKIP = ( KBL**2 ) + 1
 | 
						|
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 | 
						|
 | 
						|
      ROWSKIP = MIN0( 5, KBL )
 | 
						|
*[TP] ROWSKIP is a tuning parameter.
 | 
						|
 | 
						|
      LKAHEAD = 1
 | 
						|
*[TP] LKAHEAD is a tuning parameter.
 | 
						|
      SWBAND = 0
 | 
						|
      PSKIPPED = 0
 | 
						|
*
 | 
						|
      DO 1993 i = 1, NSWEEP
 | 
						|
*     .. go go go ...
 | 
						|
*
 | 
						|
         MXAAPQ = ZERO
 | 
						|
         MXSINJ = ZERO
 | 
						|
         ISWROT = 0
 | 
						|
*
 | 
						|
         NOTROT = 0
 | 
						|
         PSKIPPED = 0
 | 
						|
*
 | 
						|
         DO 2000 ibr = 1, NBL
 | 
						|
 | 
						|
            igl = ( ibr-1 )*KBL + 1
 | 
						|
*
 | 
						|
            DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
 | 
						|
*
 | 
						|
               igl = igl + ir1*KBL
 | 
						|
*
 | 
						|
               DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
 | 
						|
 | 
						|
*     .. de Rijk's pivoting
 | 
						|
                  q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | 
						|
                  IF( p.NE.q ) THEN
 | 
						|
                     CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | 
						|
                     IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
 | 
						|
     $                                      V( 1, q ), 1 )
 | 
						|
                     TEMP1 = SVA( p )
 | 
						|
                     SVA( p ) = SVA( q )
 | 
						|
                     SVA( q ) = TEMP1
 | 
						|
                     TEMP1 = D( p )
 | 
						|
                     D( p ) = D( q )
 | 
						|
                     D( q ) = TEMP1
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( ir1.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Column norms are periodically updated by explicit
 | 
						|
*        norm computation.
 | 
						|
*        Caveat:
 | 
						|
*        Some BLAS implementations compute SNRM2(M,A(1,p),1)
 | 
						|
*        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may result in
 | 
						|
*        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and
 | 
						|
*        undeflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
 | 
						|
*        Hence, SNRM2 cannot be trusted, not even in the case when
 | 
						|
*        the true norm is far from the under(over)flow boundaries.
 | 
						|
*        If properly implemented SNRM2 is available, the IF-THEN-ELSE
 | 
						|
*        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
 | 
						|
*
 | 
						|
                     IF( ( SVA( p ).LT.ROOTBIG ) .AND.
 | 
						|
     $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
 | 
						|
                        SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
 | 
						|
                     ELSE
 | 
						|
                        TEMP1 = ZERO
 | 
						|
                        AAPP = ONE
 | 
						|
                        CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
 | 
						|
                        SVA( p ) = TEMP1*SQRT( AAPP )*D( p )
 | 
						|
                     END IF
 | 
						|
                     AAPP = SVA( p )
 | 
						|
                  ELSE
 | 
						|
                     AAPP = SVA( p )
 | 
						|
                  END IF
 | 
						|
 | 
						|
*
 | 
						|
                  IF( AAPP.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
                     PSKIPPED = 0
 | 
						|
*
 | 
						|
                     DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
 | 
						|
*
 | 
						|
                        AAQQ = SVA( q )
 | 
						|
 | 
						|
                        IF( AAQQ.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
                           AAPP0 = AAPP
 | 
						|
                           IF( AAQQ.GE.ONE ) THEN
 | 
						|
                              ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | 
						|
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | 
						|
     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
 | 
						|
     $                                  / AAPP
 | 
						|
                              ELSE
 | 
						|
                                 CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
 | 
						|
     $                                        M, 1, WORK, LDA, IERR )
 | 
						|
                                 AAPQ = SDOT( M, WORK, 1, A( 1, q ),
 | 
						|
     $                                  1 )*D( q ) / AAQQ
 | 
						|
                              END IF
 | 
						|
                           ELSE
 | 
						|
                              ROTOK = AAPP.LE.( AAQQ / SMALL )
 | 
						|
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | 
						|
     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
 | 
						|
     $                                  / AAPP
 | 
						|
                              ELSE
 | 
						|
                                 CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
 | 
						|
     $                                        M, 1, WORK, LDA, IERR )
 | 
						|
                                 AAPQ = SDOT( M, WORK, 1, A( 1, p ),
 | 
						|
     $                                  1 )*D( p ) / AAPP
 | 
						|
                              END IF
 | 
						|
                           END IF
 | 
						|
*
 | 
						|
                           MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
 | 
						|
*
 | 
						|
*        TO rotate or NOT to rotate, THAT is the question ...
 | 
						|
*
 | 
						|
                           IF( ABS( AAPQ ).GT.TOL ) THEN
 | 
						|
*
 | 
						|
*           .. rotate
 | 
						|
*           ROTATED = ROTATED + ONE
 | 
						|
*
 | 
						|
                              IF( ir1.EQ.0 ) THEN
 | 
						|
                                 NOTROT = 0
 | 
						|
                                 PSKIPPED = 0
 | 
						|
                                 ISWROT = ISWROT + 1
 | 
						|
                              END IF
 | 
						|
*
 | 
						|
                              IF( ROTOK ) THEN
 | 
						|
*
 | 
						|
                                 AQOAP = AAQQ / AAPP
 | 
						|
                                 APOAQ = AAPP / AAQQ
 | 
						|
                                 THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
 | 
						|
*
 | 
						|
                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | 
						|
*
 | 
						|
                                    T = HALF / THETA
 | 
						|
                                    FASTR( 3 ) = T*D( p ) / D( q )
 | 
						|
                                    FASTR( 4 ) = -T*D( q ) / D( p )
 | 
						|
                                    CALL SROTM( M, A( 1, p ), 1,
 | 
						|
     $                                          A( 1, q ), 1, FASTR )
 | 
						|
                                    IF( RSVEC )CALL SROTM( MVL,
 | 
						|
     $                                              V( 1, p ), 1,
 | 
						|
     $                                              V( 1, q ), 1,
 | 
						|
     $                                              FASTR )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | 
						|
     $                                         ONE+T*APOAQ*AAPQ ) )
 | 
						|
                                    AAPP = AAPP*SQRT( AMAX1( ZERO, 
 | 
						|
     $                                         ONE-T*AQOAP*AAPQ ) )
 | 
						|
                                    MXSINJ = AMAX1( MXSINJ, ABS( T ) )
 | 
						|
*
 | 
						|
                                 ELSE
 | 
						|
*
 | 
						|
*                 .. choose correct signum for THETA and rotate
 | 
						|
*
 | 
						|
                                    THSIGN = -SIGN( ONE, AAPQ )
 | 
						|
                                    T = ONE / ( THETA+THSIGN*
 | 
						|
     $                                  SQRT( ONE+THETA*THETA ) )
 | 
						|
                                    CS = SQRT( ONE / ( ONE+T*T ) )
 | 
						|
                                    SN = T*CS
 | 
						|
*
 | 
						|
                                    MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | 
						|
     $                                         ONE+T*APOAQ*AAPQ ) )
 | 
						|
                                    AAPP = AAPP*SQRT( AMAX1( ZERO,
 | 
						|
     $                                     ONE-T*AQOAP*AAPQ ) )
 | 
						|
*
 | 
						|
                                    APOAQ = D( p ) / D( q )
 | 
						|
                                    AQOAP = D( q ) / D( p )
 | 
						|
                                    IF( D( p ).GE.ONE ) THEN
 | 
						|
                                       IF( D( q ).GE.ONE ) THEN
 | 
						|
                                          FASTR( 3 ) = T*APOAQ
 | 
						|
                                          FASTR( 4 ) = -T*AQOAP
 | 
						|
                                          D( p ) = D( p )*CS
 | 
						|
                                          D( q ) = D( q )*CS
 | 
						|
                                          CALL SROTM( M, A( 1, p ), 1,
 | 
						|
     $                                                A( 1, q ), 1,
 | 
						|
     $                                                FASTR )
 | 
						|
                                          IF( RSVEC )CALL SROTM( MVL,
 | 
						|
     $                                        V( 1, p ), 1, V( 1, q ),
 | 
						|
     $                                        1, FASTR )
 | 
						|
                                       ELSE
 | 
						|
                                          CALL SAXPY( M, -T*AQOAP,
 | 
						|
     $                                                A( 1, q ), 1,
 | 
						|
     $                                                A( 1, p ), 1 )
 | 
						|
                                          CALL SAXPY( M, CS*SN*APOAQ,
 | 
						|
     $                                                A( 1, p ), 1,
 | 
						|
     $                                                A( 1, q ), 1 )
 | 
						|
                                          D( p ) = D( p )*CS
 | 
						|
                                          D( q ) = D( q ) / CS
 | 
						|
                                          IF( RSVEC ) THEN
 | 
						|
                                             CALL SAXPY( MVL, -T*AQOAP,
 | 
						|
     $                                                   V( 1, q ), 1,
 | 
						|
     $                                                   V( 1, p ), 1 )
 | 
						|
                                             CALL SAXPY( MVL,
 | 
						|
     $                                                   CS*SN*APOAQ,
 | 
						|
     $                                                   V( 1, p ), 1,
 | 
						|
     $                                                   V( 1, q ), 1 )
 | 
						|
                                          END IF
 | 
						|
                                       END IF
 | 
						|
                                    ELSE
 | 
						|
                                       IF( D( q ).GE.ONE ) THEN
 | 
						|
                                          CALL SAXPY( M, T*APOAQ,
 | 
						|
     $                                                A( 1, p ), 1,
 | 
						|
     $                                                A( 1, q ), 1 )
 | 
						|
                                          CALL SAXPY( M, -CS*SN*AQOAP,
 | 
						|
     $                                                A( 1, q ), 1,
 | 
						|
     $                                                A( 1, p ), 1 )
 | 
						|
                                          D( p ) = D( p ) / CS
 | 
						|
                                          D( q ) = D( q )*CS
 | 
						|
                                          IF( RSVEC ) THEN
 | 
						|
                                             CALL SAXPY( MVL, T*APOAQ,
 | 
						|
     $                                                   V( 1, p ), 1,
 | 
						|
     $                                                   V( 1, q ), 1 )
 | 
						|
                                             CALL SAXPY( MVL,
 | 
						|
     $                                                   -CS*SN*AQOAP,
 | 
						|
     $                                                   V( 1, q ), 1,
 | 
						|
     $                                                   V( 1, p ), 1 )
 | 
						|
                                          END IF
 | 
						|
                                       ELSE
 | 
						|
                                          IF( D( p ).GE.D( q ) ) THEN
 | 
						|
                                             CALL SAXPY( M, -T*AQOAP,
 | 
						|
     $                                                   A( 1, q ), 1,
 | 
						|
     $                                                   A( 1, p ), 1 )
 | 
						|
                                             CALL SAXPY( M, CS*SN*APOAQ,
 | 
						|
     $                                                   A( 1, p ), 1,
 | 
						|
     $                                                   A( 1, q ), 1 )
 | 
						|
                                             D( p ) = D( p )*CS
 | 
						|
                                             D( q ) = D( q ) / CS
 | 
						|
                                             IF( RSVEC ) THEN
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               -T*AQOAP,
 | 
						|
     $                                               V( 1, q ), 1,
 | 
						|
     $                                               V( 1, p ), 1 )
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               CS*SN*APOAQ,
 | 
						|
     $                                               V( 1, p ), 1,
 | 
						|
     $                                               V( 1, q ), 1 )
 | 
						|
                                             END IF
 | 
						|
                                          ELSE
 | 
						|
                                             CALL SAXPY( M, T*APOAQ,
 | 
						|
     $                                                   A( 1, p ), 1,
 | 
						|
     $                                                   A( 1, q ), 1 )
 | 
						|
                                             CALL SAXPY( M,
 | 
						|
     $                                                   -CS*SN*AQOAP,
 | 
						|
     $                                                   A( 1, q ), 1,
 | 
						|
     $                                                   A( 1, p ), 1 )
 | 
						|
                                             D( p ) = D( p ) / CS
 | 
						|
                                             D( q ) = D( q )*CS
 | 
						|
                                             IF( RSVEC ) THEN
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               T*APOAQ, V( 1, p ),
 | 
						|
     $                                               1, V( 1, q ), 1 )
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               -CS*SN*AQOAP,
 | 
						|
     $                                               V( 1, q ), 1,
 | 
						|
     $                                               V( 1, p ), 1 )
 | 
						|
                                             END IF
 | 
						|
                                          END IF
 | 
						|
                                       END IF
 | 
						|
                                    END IF
 | 
						|
                                 END IF
 | 
						|
*
 | 
						|
                              ELSE
 | 
						|
*              .. have to use modified Gram-Schmidt like transformation
 | 
						|
                                 CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
 | 
						|
     $                                        1, WORK, LDA, IERR )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
 | 
						|
     $                                        1, A( 1, q ), LDA, IERR )
 | 
						|
                                 TEMP1 = -AAPQ*D( p ) / D( q )
 | 
						|
                                 CALL SAXPY( M, TEMP1, WORK, 1,
 | 
						|
     $                                       A( 1, q ), 1 )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
 | 
						|
     $                                        1, A( 1, q ), LDA, IERR )
 | 
						|
                                 SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | 
						|
     $                                      ONE-AAPQ*AAPQ ) )
 | 
						|
                                 MXSINJ = AMAX1( MXSINJ, SFMIN )
 | 
						|
                              END IF
 | 
						|
*           END IF ROTOK THEN ... ELSE
 | 
						|
*
 | 
						|
*           In the case of cancellation in updating SVA(q), SVA(p)
 | 
						|
*           recompute SVA(q), SVA(p).
 | 
						|
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | 
						|
     $                            THEN
 | 
						|
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
 | 
						|
     $                                         D( q )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAQQ = ONE
 | 
						|
                                    CALL SLASSQ( M, A( 1, q ), 1, T,
 | 
						|
     $                                           AAQQ )
 | 
						|
                                    SVA( q ) = T*SQRT( AAQQ )*D( q )
 | 
						|
                                 END IF
 | 
						|
                              END IF
 | 
						|
                              IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
 | 
						|
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    AAPP = SNRM2( M, A( 1, p ), 1 )*
 | 
						|
     $                                     D( p )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAPP = ONE
 | 
						|
                                    CALL SLASSQ( M, A( 1, p ), 1, T,
 | 
						|
     $                                           AAPP )
 | 
						|
                                    AAPP = T*SQRT( AAPP )*D( p )
 | 
						|
                                 END IF
 | 
						|
                                 SVA( p ) = AAPP
 | 
						|
                              END IF
 | 
						|
*
 | 
						|
                           ELSE
 | 
						|
*        A(:,p) and A(:,q) already numerically orthogonal
 | 
						|
                              IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | 
						|
                              PSKIPPED = PSKIPPED + 1
 | 
						|
                           END IF
 | 
						|
                        ELSE
 | 
						|
*        A(:,q) is zero column
 | 
						|
                           IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | 
						|
                           PSKIPPED = PSKIPPED + 1
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
                        IF( ( i.LE.SWBAND ) .AND.
 | 
						|
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | 
						|
                           IF( ir1.EQ.0 )AAPP = -AAPP
 | 
						|
                           NOTROT = 0
 | 
						|
                           GO TO 2103
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
 2002                CONTINUE
 | 
						|
*     END q-LOOP
 | 
						|
*
 | 
						|
 2103                CONTINUE
 | 
						|
*     bailed out of q-loop
 | 
						|
 | 
						|
                     SVA( p ) = AAPP
 | 
						|
 | 
						|
                  ELSE
 | 
						|
                     SVA( p ) = AAPP
 | 
						|
                     IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
 | 
						|
     $                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
 2001          CONTINUE
 | 
						|
*     end of the p-loop
 | 
						|
*     end of doing the block ( ibr, ibr )
 | 
						|
 1002       CONTINUE
 | 
						|
*     end of ir1-loop
 | 
						|
*
 | 
						|
*........................................................
 | 
						|
* ... go to the off diagonal blocks
 | 
						|
*
 | 
						|
            igl = ( ibr-1 )*KBL + 1
 | 
						|
*
 | 
						|
            DO 2010 jbc = ibr + 1, NBL
 | 
						|
*
 | 
						|
               jgl = ( jbc-1 )*KBL + 1
 | 
						|
*
 | 
						|
*        doing the block at ( ibr, jbc )
 | 
						|
*
 | 
						|
               IJBLSK = 0
 | 
						|
               DO 2100 p = igl, MIN0( igl+KBL-1, N )
 | 
						|
*
 | 
						|
                  AAPP = SVA( p )
 | 
						|
*
 | 
						|
                  IF( AAPP.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
                     PSKIPPED = 0
 | 
						|
*
 | 
						|
                     DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
 | 
						|
*
 | 
						|
                        AAQQ = SVA( q )
 | 
						|
*
 | 
						|
                        IF( AAQQ.GT.ZERO ) THEN
 | 
						|
                           AAPP0 = AAPP
 | 
						|
*
 | 
						|
*     .. M x 2 Jacobi SVD ..
 | 
						|
*
 | 
						|
*        .. Safe Gram matrix computation ..
 | 
						|
*
 | 
						|
                           IF( AAQQ.GE.ONE ) THEN
 | 
						|
                              IF( AAPP.GE.AAQQ ) THEN
 | 
						|
                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | 
						|
                              ELSE
 | 
						|
                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
 | 
						|
                              END IF
 | 
						|
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | 
						|
     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
 | 
						|
     $                                  / AAPP
 | 
						|
                              ELSE
 | 
						|
                                 CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
 | 
						|
     $                                        M, 1, WORK, LDA, IERR )
 | 
						|
                                 AAPQ = SDOT( M, WORK, 1, A( 1, q ),
 | 
						|
     $                                  1 )*D( q ) / AAQQ
 | 
						|
                              END IF
 | 
						|
                           ELSE
 | 
						|
                              IF( AAPP.GE.AAQQ ) THEN
 | 
						|
                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
 | 
						|
                              ELSE
 | 
						|
                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
 | 
						|
                              END IF
 | 
						|
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
 | 
						|
     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
 | 
						|
     $                                  / AAPP
 | 
						|
                              ELSE
 | 
						|
                                 CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
 | 
						|
                                 CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
 | 
						|
     $                                        M, 1, WORK, LDA, IERR )
 | 
						|
                                 AAPQ = SDOT( M, WORK, 1, A( 1, p ),
 | 
						|
     $                                  1 )*D( p ) / AAPP
 | 
						|
                              END IF
 | 
						|
                           END IF
 | 
						|
*
 | 
						|
                           MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
 | 
						|
*
 | 
						|
*        TO rotate or NOT to rotate, THAT is the question ...
 | 
						|
*
 | 
						|
                           IF( ABS( AAPQ ).GT.TOL ) THEN
 | 
						|
                              NOTROT = 0
 | 
						|
*           ROTATED  = ROTATED + 1
 | 
						|
                              PSKIPPED = 0
 | 
						|
                              ISWROT = ISWROT + 1
 | 
						|
*
 | 
						|
                              IF( ROTOK ) THEN
 | 
						|
*
 | 
						|
                                 AQOAP = AAQQ / AAPP
 | 
						|
                                 APOAQ = AAPP / AAQQ
 | 
						|
                                 THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
 | 
						|
                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA
 | 
						|
*
 | 
						|
                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | 
						|
                                    T = HALF / THETA
 | 
						|
                                    FASTR( 3 ) = T*D( p ) / D( q )
 | 
						|
                                    FASTR( 4 ) = -T*D( q ) / D( p )
 | 
						|
                                    CALL SROTM( M, A( 1, p ), 1,
 | 
						|
     $                                          A( 1, q ), 1, FASTR )
 | 
						|
                                    IF( RSVEC )CALL SROTM( MVL,
 | 
						|
     $                                              V( 1, p ), 1,
 | 
						|
     $                                              V( 1, q ), 1,
 | 
						|
     $                                              FASTR )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | 
						|
     $                                         ONE+T*APOAQ*AAPQ ) )
 | 
						|
                                    AAPP = AAPP*SQRT( AMAX1( ZERO,
 | 
						|
     $                                     ONE-T*AQOAP*AAPQ ) )
 | 
						|
                                    MXSINJ = AMAX1( MXSINJ, ABS( T ) )
 | 
						|
                                 ELSE
 | 
						|
*
 | 
						|
*                 .. choose correct signum for THETA and rotate
 | 
						|
*
 | 
						|
                                    THSIGN = -SIGN( ONE, AAPQ )
 | 
						|
                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
 | 
						|
                                    T = ONE / ( THETA+THSIGN*
 | 
						|
     $                                  SQRT( ONE+THETA*THETA ) )
 | 
						|
                                    CS = SQRT( ONE / ( ONE+T*T ) )
 | 
						|
                                    SN = T*CS
 | 
						|
                                    MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | 
						|
     $                                         ONE+T*APOAQ*AAPQ ) )
 | 
						|
                                    AAPP = AAPP*SQRT( AMAX1( ZERO, 
 | 
						|
     $                                         ONE-T*AQOAP*AAPQ ) )
 | 
						|
*
 | 
						|
                                    APOAQ = D( p ) / D( q )
 | 
						|
                                    AQOAP = D( q ) / D( p )
 | 
						|
                                    IF( D( p ).GE.ONE ) THEN
 | 
						|
*
 | 
						|
                                       IF( D( q ).GE.ONE ) THEN
 | 
						|
                                          FASTR( 3 ) = T*APOAQ
 | 
						|
                                          FASTR( 4 ) = -T*AQOAP
 | 
						|
                                          D( p ) = D( p )*CS
 | 
						|
                                          D( q ) = D( q )*CS
 | 
						|
                                          CALL SROTM( M, A( 1, p ), 1,
 | 
						|
     $                                                A( 1, q ), 1,
 | 
						|
     $                                                FASTR )
 | 
						|
                                          IF( RSVEC )CALL SROTM( MVL,
 | 
						|
     $                                        V( 1, p ), 1, V( 1, q ),
 | 
						|
     $                                        1, FASTR )
 | 
						|
                                       ELSE
 | 
						|
                                          CALL SAXPY( M, -T*AQOAP,
 | 
						|
     $                                                A( 1, q ), 1,
 | 
						|
     $                                                A( 1, p ), 1 )
 | 
						|
                                          CALL SAXPY( M, CS*SN*APOAQ,
 | 
						|
     $                                                A( 1, p ), 1,
 | 
						|
     $                                                A( 1, q ), 1 )
 | 
						|
                                          IF( RSVEC ) THEN
 | 
						|
                                             CALL SAXPY( MVL, -T*AQOAP,
 | 
						|
     $                                                   V( 1, q ), 1,
 | 
						|
     $                                                   V( 1, p ), 1 )
 | 
						|
                                             CALL SAXPY( MVL,
 | 
						|
     $                                                   CS*SN*APOAQ,
 | 
						|
     $                                                   V( 1, p ), 1,
 | 
						|
     $                                                   V( 1, q ), 1 )
 | 
						|
                                          END IF
 | 
						|
                                          D( p ) = D( p )*CS
 | 
						|
                                          D( q ) = D( q ) / CS
 | 
						|
                                       END IF
 | 
						|
                                    ELSE
 | 
						|
                                       IF( D( q ).GE.ONE ) THEN
 | 
						|
                                          CALL SAXPY( M, T*APOAQ,
 | 
						|
     $                                                A( 1, p ), 1,
 | 
						|
     $                                                A( 1, q ), 1 )
 | 
						|
                                          CALL SAXPY( M, -CS*SN*AQOAP,
 | 
						|
     $                                                A( 1, q ), 1,
 | 
						|
     $                                                A( 1, p ), 1 )
 | 
						|
                                          IF( RSVEC ) THEN
 | 
						|
                                             CALL SAXPY( MVL, T*APOAQ,
 | 
						|
     $                                                   V( 1, p ), 1,
 | 
						|
     $                                                   V( 1, q ), 1 )
 | 
						|
                                             CALL SAXPY( MVL,
 | 
						|
     $                                                   -CS*SN*AQOAP,
 | 
						|
     $                                                   V( 1, q ), 1,
 | 
						|
     $                                                   V( 1, p ), 1 )
 | 
						|
                                          END IF
 | 
						|
                                          D( p ) = D( p ) / CS
 | 
						|
                                          D( q ) = D( q )*CS
 | 
						|
                                       ELSE
 | 
						|
                                          IF( D( p ).GE.D( q ) ) THEN
 | 
						|
                                             CALL SAXPY( M, -T*AQOAP,
 | 
						|
     $                                                   A( 1, q ), 1,
 | 
						|
     $                                                   A( 1, p ), 1 )
 | 
						|
                                             CALL SAXPY( M, CS*SN*APOAQ,
 | 
						|
     $                                                   A( 1, p ), 1,
 | 
						|
     $                                                   A( 1, q ), 1 )
 | 
						|
                                             D( p ) = D( p )*CS
 | 
						|
                                             D( q ) = D( q ) / CS
 | 
						|
                                             IF( RSVEC ) THEN
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               -T*AQOAP,
 | 
						|
     $                                               V( 1, q ), 1,
 | 
						|
     $                                               V( 1, p ), 1 )
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               CS*SN*APOAQ,
 | 
						|
     $                                               V( 1, p ), 1,
 | 
						|
     $                                               V( 1, q ), 1 )
 | 
						|
                                             END IF
 | 
						|
                                          ELSE
 | 
						|
                                             CALL SAXPY( M, T*APOAQ,
 | 
						|
     $                                                   A( 1, p ), 1,
 | 
						|
     $                                                   A( 1, q ), 1 )
 | 
						|
                                             CALL SAXPY( M,
 | 
						|
     $                                                   -CS*SN*AQOAP,
 | 
						|
     $                                                   A( 1, q ), 1,
 | 
						|
     $                                                   A( 1, p ), 1 )
 | 
						|
                                             D( p ) = D( p ) / CS
 | 
						|
                                             D( q ) = D( q )*CS
 | 
						|
                                             IF( RSVEC ) THEN
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               T*APOAQ, V( 1, p ),
 | 
						|
     $                                               1, V( 1, q ), 1 )
 | 
						|
                                                CALL SAXPY( MVL,
 | 
						|
     $                                               -CS*SN*AQOAP,
 | 
						|
     $                                               V( 1, q ), 1,
 | 
						|
     $                                               V( 1, p ), 1 )
 | 
						|
                                             END IF
 | 
						|
                                          END IF
 | 
						|
                                       END IF
 | 
						|
                                    END IF
 | 
						|
                                 END IF
 | 
						|
*
 | 
						|
                              ELSE
 | 
						|
                                 IF( AAPP.GT.AAQQ ) THEN
 | 
						|
                                    CALL SCOPY( M, A( 1, p ), 1, WORK,
 | 
						|
     $                                          1 )
 | 
						|
                                    CALL SLASCL( 'G', 0, 0, AAPP, ONE,
 | 
						|
     $                                           M, 1, WORK, LDA, IERR )
 | 
						|
                                    CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
 | 
						|
     $                                           M, 1, A( 1, q ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    TEMP1 = -AAPQ*D( p ) / D( q )
 | 
						|
                                    CALL SAXPY( M, TEMP1, WORK, 1,
 | 
						|
     $                                          A( 1, q ), 1 )
 | 
						|
                                    CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
 | 
						|
     $                                           M, 1, A( 1, q ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
 | 
						|
     $                                         ONE-AAPQ*AAPQ ) )
 | 
						|
                                    MXSINJ = AMAX1( MXSINJ, SFMIN )
 | 
						|
                                 ELSE
 | 
						|
                                    CALL SCOPY( M, A( 1, q ), 1, WORK,
 | 
						|
     $                                          1 )
 | 
						|
                                    CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
 | 
						|
     $                                           M, 1, WORK, LDA, IERR )
 | 
						|
                                    CALL SLASCL( 'G', 0, 0, AAPP, ONE,
 | 
						|
     $                                           M, 1, A( 1, p ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    TEMP1 = -AAPQ*D( q ) / D( p )
 | 
						|
                                    CALL SAXPY( M, TEMP1, WORK, 1,
 | 
						|
     $                                          A( 1, p ), 1 )
 | 
						|
                                    CALL SLASCL( 'G', 0, 0, ONE, AAPP,
 | 
						|
     $                                           M, 1, A( 1, p ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
 | 
						|
     $                                         ONE-AAPQ*AAPQ ) )
 | 
						|
                                    MXSINJ = AMAX1( MXSINJ, SFMIN )
 | 
						|
                                 END IF
 | 
						|
                              END IF
 | 
						|
*           END IF ROTOK THEN ... ELSE
 | 
						|
*
 | 
						|
*           In the case of cancellation in updating SVA(q)
 | 
						|
*           .. recompute SVA(q)
 | 
						|
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | 
						|
     $                            THEN
 | 
						|
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
 | 
						|
     $                                         D( q )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAQQ = ONE
 | 
						|
                                    CALL SLASSQ( M, A( 1, q ), 1, T,
 | 
						|
     $                                           AAQQ )
 | 
						|
                                    SVA( q ) = T*SQRT( AAQQ )*D( q )
 | 
						|
                                 END IF
 | 
						|
                              END IF
 | 
						|
                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
 | 
						|
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    AAPP = SNRM2( M, A( 1, p ), 1 )*
 | 
						|
     $                                     D( p )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAPP = ONE
 | 
						|
                                    CALL SLASSQ( M, A( 1, p ), 1, T,
 | 
						|
     $                                           AAPP )
 | 
						|
                                    AAPP = T*SQRT( AAPP )*D( p )
 | 
						|
                                 END IF
 | 
						|
                                 SVA( p ) = AAPP
 | 
						|
                              END IF
 | 
						|
*              end of OK rotation
 | 
						|
                           ELSE
 | 
						|
                              NOTROT = NOTROT + 1
 | 
						|
                              PSKIPPED = PSKIPPED + 1
 | 
						|
                              IJBLSK = IJBLSK + 1
 | 
						|
                           END IF
 | 
						|
                        ELSE
 | 
						|
                           NOTROT = NOTROT + 1
 | 
						|
                           PSKIPPED = PSKIPPED + 1
 | 
						|
                           IJBLSK = IJBLSK + 1
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
 | 
						|
     $                      THEN
 | 
						|
                           SVA( p ) = AAPP
 | 
						|
                           NOTROT = 0
 | 
						|
                           GO TO 2011
 | 
						|
                        END IF
 | 
						|
                        IF( ( i.LE.SWBAND ) .AND.
 | 
						|
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | 
						|
                           AAPP = -AAPP
 | 
						|
                           NOTROT = 0
 | 
						|
                           GO TO 2203
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
 2200                CONTINUE
 | 
						|
*        end of the q-loop
 | 
						|
 2203                CONTINUE
 | 
						|
*
 | 
						|
                     SVA( p ) = AAPP
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
 | 
						|
     $                   MIN0( jgl+KBL-1, N ) - jgl + 1
 | 
						|
                     IF( AAPP.LT.ZERO )NOTROT = 0
 | 
						|
                  END IF
 | 
						|
 | 
						|
 2100          CONTINUE
 | 
						|
*     end of the p-loop
 | 
						|
 2010       CONTINUE
 | 
						|
*     end of the jbc-loop
 | 
						|
 2011       CONTINUE
 | 
						|
*2011 bailed out of the jbc-loop
 | 
						|
            DO 2012 p = igl, MIN0( igl+KBL-1, N )
 | 
						|
               SVA( p ) = ABS( SVA( p ) )
 | 
						|
 2012       CONTINUE
 | 
						|
*
 | 
						|
 2000    CONTINUE
 | 
						|
*2000 :: end of the ibr-loop
 | 
						|
*
 | 
						|
*     .. update SVA(N)
 | 
						|
         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
 | 
						|
     $       THEN
 | 
						|
            SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
 | 
						|
         ELSE
 | 
						|
            T = ZERO
 | 
						|
            AAPP = ONE
 | 
						|
            CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
 | 
						|
            SVA( N ) = T*SQRT( AAPP )*D( N )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*     Additional steering devices
 | 
						|
*
 | 
						|
         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
 | 
						|
     $       ( ISWROT.LE.N ) ) )SWBAND = i
 | 
						|
*
 | 
						|
         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
 | 
						|
     $       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
 | 
						|
            GO TO 1994
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( NOTROT.GE.EMPTSW )GO TO 1994
 | 
						|
 | 
						|
 1993 CONTINUE
 | 
						|
*     end i=1:NSWEEP loop
 | 
						|
* #:) Reaching this point means that the procedure has comleted the given
 | 
						|
*     number of iterations.
 | 
						|
      INFO = NSWEEP - 1
 | 
						|
      GO TO 1995
 | 
						|
 1994 CONTINUE
 | 
						|
* #:) Reaching this point means that during the i-th sweep all pivots were
 | 
						|
*     below the given tolerance, causing early exit.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
* #:) INFO = 0 confirms successful iterations.
 | 
						|
 1995 CONTINUE
 | 
						|
*
 | 
						|
*     Sort the vector D.
 | 
						|
      DO 5991 p = 1, N - 1
 | 
						|
         q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | 
						|
         IF( p.NE.q ) THEN
 | 
						|
            TEMP1 = SVA( p )
 | 
						|
            SVA( p ) = SVA( q )
 | 
						|
            SVA( q ) = TEMP1
 | 
						|
            TEMP1 = D( p )
 | 
						|
            D( p ) = D( q )
 | 
						|
            D( q ) = TEMP1
 | 
						|
            CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | 
						|
            IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
 | 
						|
         END IF
 | 
						|
 5991 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*     ..
 | 
						|
*     .. END OF SGSVJ0
 | 
						|
*     ..
 | 
						|
      END
 |