711 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			711 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLA_GBRFSX_EXTENDED + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
 | 
						|
*                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
 | 
						|
*                                       COLEQU, C, B, LDB, Y, LDY,
 | 
						|
*                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
 | 
						|
*                                       ERR_BNDS_COMP, RES, AYB, DY,
 | 
						|
*                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
 | 
						|
*                                       DZ_UB, IGNORE_CWISE, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
 | 
						|
*      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
 | 
						|
*       LOGICAL            COLEQU, IGNORE_CWISE
 | 
						|
*       DOUBLE PRECISION   RTHRESH, DZ_UB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
 | 
						|
*      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
 | 
						|
*       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
 | 
						|
*      $                   ERR_BNDS_NORM( NRHS, * ),
 | 
						|
*      $                   ERR_BNDS_COMP( NRHS, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> 
 | 
						|
*> DLA_GBRFSX_EXTENDED improves the computed solution to a system of
 | 
						|
*> linear equations by performing extra-precise iterative refinement
 | 
						|
*> and provides error bounds and backward error estimates for the solution.
 | 
						|
*> This subroutine is called by DGBRFSX to perform iterative refinement.
 | 
						|
*> In addition to normwise error bound, the code provides maximum
 | 
						|
*> componentwise error bound if possible. See comments for ERR_BNDS_NORM
 | 
						|
*> and ERR_BNDS_COMP for details of the error bounds. Note that this
 | 
						|
*> subroutine is only resonsible for setting the second fields of
 | 
						|
*> ERR_BNDS_NORM and ERR_BNDS_COMP.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] PREC_TYPE
 | 
						|
*> \verbatim
 | 
						|
*>          PREC_TYPE is INTEGER
 | 
						|
*>     Specifies the intermediate precision to be used in refinement.
 | 
						|
*>     The value is defined by ILAPREC(P) where P is a CHARACTER and
 | 
						|
*>     P    = 'S':  Single
 | 
						|
*>          = 'D':  Double
 | 
						|
*>          = 'I':  Indigenous
 | 
						|
*>          = 'X', 'E':  Extra
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS_TYPE
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS_TYPE is INTEGER
 | 
						|
*>     Specifies the transposition operation on A.
 | 
						|
*>     The value is defined by ILATRANS(T) where T is a CHARACTER and
 | 
						|
*>     T    = 'N':  No transpose
 | 
						|
*>          = 'T':  Transpose
 | 
						|
*>          = 'C':  Conjugate transpose
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>     The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>     The number of superdiagonals within the band of A.  KU >= 0
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>     The number of right-hand-sides, i.e., the number of columns of the
 | 
						|
*>     matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | 
						|
*>          On entry, the N-by-N matrix AB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDBA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFB
 | 
						|
*> \verbatim
 | 
						|
*>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
 | 
						|
*>     The factors L and U from the factorization
 | 
						|
*>     A = P*L*U as computed by DGBTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFB is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAFB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>     The pivot indices from the factorization A = P*L*U
 | 
						|
*>     as computed by DGBTRF; row i of the matrix was interchanged
 | 
						|
*>     with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COLEQU
 | 
						|
*> \verbatim
 | 
						|
*>          COLEQU is LOGICAL
 | 
						|
*>     If .TRUE. then column equilibration was done to A before calling
 | 
						|
*>     this routine. This is needed to compute the solution and error
 | 
						|
*>     bounds correctly.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>     The column scale factors for A. If COLEQU = .FALSE., C
 | 
						|
*>     is not accessed. If C is input, each element of C should be a power
 | 
						|
*>     of the radix to ensure a reliable solution and error estimates.
 | 
						|
*>     Scaling by powers of the radix does not cause rounding errors unless
 | 
						|
*>     the result underflows or overflows. Rounding errors during scaling
 | 
						|
*>     lead to refining with a matrix that is not equivalent to the
 | 
						|
*>     input matrix, producing error estimates that may not be
 | 
						|
*>     reliable.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>     The right-hand-side matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>     The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is DOUBLE PRECISION array, dimension
 | 
						|
*>                    (LDY,NRHS)
 | 
						|
*>     On entry, the solution matrix X, as computed by DGBTRS.
 | 
						|
*>     On exit, the improved solution matrix Y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDY
 | 
						|
*> \verbatim
 | 
						|
*>          LDY is INTEGER
 | 
						|
*>     The leading dimension of the array Y.  LDY >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BERR_OUT
 | 
						|
*> \verbatim
 | 
						|
*>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>     On exit, BERR_OUT(j) contains the componentwise relative backward
 | 
						|
*>     error for right-hand-side j from the formula
 | 
						|
*>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
 | 
						|
*>     where abs(Z) is the componentwise absolute value of the matrix
 | 
						|
*>     or vector Z. This is computed by DLA_LIN_BERR.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N_NORMS
 | 
						|
*> \verbatim
 | 
						|
*>          N_NORMS is INTEGER
 | 
						|
*>     Determines which error bounds to return (see ERR_BNDS_NORM
 | 
						|
*>     and ERR_BNDS_COMP).
 | 
						|
*>     If N_NORMS >= 1 return normwise error bounds.
 | 
						|
*>     If N_NORMS >= 2 return componentwise error bounds.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ERR_BNDS_NORM
 | 
						|
*> \verbatim
 | 
						|
*>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
 | 
						|
*>                    (NRHS, N_ERR_BNDS)
 | 
						|
*>     For each right-hand side, this array contains information about
 | 
						|
*>     various error bounds and condition numbers corresponding to the
 | 
						|
*>     normwise relative error, which is defined as follows:
 | 
						|
*>
 | 
						|
*>     Normwise relative error in the ith solution vector:
 | 
						|
*>             max_j (abs(XTRUE(j,i) - X(j,i)))
 | 
						|
*>            ------------------------------
 | 
						|
*>                  max_j abs(X(j,i))
 | 
						|
*>
 | 
						|
*>     The array is indexed by the type of error information as described
 | 
						|
*>     below. There currently are up to three pieces of information
 | 
						|
*>     returned.
 | 
						|
*>
 | 
						|
*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
 | 
						|
*>     right-hand side.
 | 
						|
*>
 | 
						|
*>     The second index in ERR_BNDS_NORM(:,err) contains the following
 | 
						|
*>     three fields:
 | 
						|
*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
 | 
						|
*>              reciprocal condition number is less than the threshold
 | 
						|
*>              sqrt(n) * slamch('Epsilon').
 | 
						|
*>
 | 
						|
*>     err = 2 "Guaranteed" error bound: The estimated forward error,
 | 
						|
*>              almost certainly within a factor of 10 of the true error
 | 
						|
*>              so long as the next entry is greater than the threshold
 | 
						|
*>              sqrt(n) * slamch('Epsilon'). This error bound should only
 | 
						|
*>              be trusted if the previous boolean is true.
 | 
						|
*>
 | 
						|
*>     err = 3  Reciprocal condition number: Estimated normwise
 | 
						|
*>              reciprocal condition number.  Compared with the threshold
 | 
						|
*>              sqrt(n) * slamch('Epsilon') to determine if the error
 | 
						|
*>              estimate is "guaranteed". These reciprocal condition
 | 
						|
*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
 | 
						|
*>              appropriately scaled matrix Z.
 | 
						|
*>              Let Z = S*A, where S scales each row by a power of the
 | 
						|
*>              radix so all absolute row sums of Z are approximately 1.
 | 
						|
*>
 | 
						|
*>     This subroutine is only responsible for setting the second field
 | 
						|
*>     above.
 | 
						|
*>     See Lapack Working Note 165 for further details and extra
 | 
						|
*>     cautions.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ERR_BNDS_COMP
 | 
						|
*> \verbatim
 | 
						|
*>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
 | 
						|
*>                    (NRHS, N_ERR_BNDS)
 | 
						|
*>     For each right-hand side, this array contains information about
 | 
						|
*>     various error bounds and condition numbers corresponding to the
 | 
						|
*>     componentwise relative error, which is defined as follows:
 | 
						|
*>
 | 
						|
*>     Componentwise relative error in the ith solution vector:
 | 
						|
*>                    abs(XTRUE(j,i) - X(j,i))
 | 
						|
*>             max_j ----------------------
 | 
						|
*>                         abs(X(j,i))
 | 
						|
*>
 | 
						|
*>     The array is indexed by the right-hand side i (on which the
 | 
						|
*>     componentwise relative error depends), and the type of error
 | 
						|
*>     information as described below. There currently are up to three
 | 
						|
*>     pieces of information returned for each right-hand side. If
 | 
						|
*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
 | 
						|
*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
 | 
						|
*>     the first (:,N_ERR_BNDS) entries are returned.
 | 
						|
*>
 | 
						|
*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
 | 
						|
*>     right-hand side.
 | 
						|
*>
 | 
						|
*>     The second index in ERR_BNDS_COMP(:,err) contains the following
 | 
						|
*>     three fields:
 | 
						|
*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
 | 
						|
*>              reciprocal condition number is less than the threshold
 | 
						|
*>              sqrt(n) * slamch('Epsilon').
 | 
						|
*>
 | 
						|
*>     err = 2 "Guaranteed" error bound: The estimated forward error,
 | 
						|
*>              almost certainly within a factor of 10 of the true error
 | 
						|
*>              so long as the next entry is greater than the threshold
 | 
						|
*>              sqrt(n) * slamch('Epsilon'). This error bound should only
 | 
						|
*>              be trusted if the previous boolean is true.
 | 
						|
*>
 | 
						|
*>     err = 3  Reciprocal condition number: Estimated componentwise
 | 
						|
*>              reciprocal condition number.  Compared with the threshold
 | 
						|
*>              sqrt(n) * slamch('Epsilon') to determine if the error
 | 
						|
*>              estimate is "guaranteed". These reciprocal condition
 | 
						|
*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
 | 
						|
*>              appropriately scaled matrix Z.
 | 
						|
*>              Let Z = S*(A*diag(x)), where x is the solution for the
 | 
						|
*>              current right-hand side and S scales each row of
 | 
						|
*>              A*diag(x) by a power of the radix so all absolute row
 | 
						|
*>              sums of Z are approximately 1.
 | 
						|
*>
 | 
						|
*>     This subroutine is only responsible for setting the second field
 | 
						|
*>     above.
 | 
						|
*>     See Lapack Working Note 165 for further details and extra
 | 
						|
*>     cautions.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RES
 | 
						|
*> \verbatim
 | 
						|
*>          RES is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>     Workspace to hold the intermediate residual.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AYB
 | 
						|
*> \verbatim
 | 
						|
*>          AYB is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>     Workspace. This can be the same workspace passed for Y_TAIL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DY
 | 
						|
*> \verbatim
 | 
						|
*>          DY is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>     Workspace to hold the intermediate solution.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Y_TAIL
 | 
						|
*> \verbatim
 | 
						|
*>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>     Workspace to hold the trailing bits of the intermediate solution.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>     Reciprocal scaled condition number.  This is an estimate of the
 | 
						|
*>     reciprocal Skeel condition number of the matrix A after
 | 
						|
*>     equilibration (if done).  If this is less than the machine
 | 
						|
*>     precision (in particular, if it is zero), the matrix is singular
 | 
						|
*>     to working precision.  Note that the error may still be small even
 | 
						|
*>     if this number is very small and the matrix appears ill-
 | 
						|
*>     conditioned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ITHRESH
 | 
						|
*> \verbatim
 | 
						|
*>          ITHRESH is INTEGER
 | 
						|
*>     The maximum number of residual computations allowed for
 | 
						|
*>     refinement. The default is 10. For 'aggressive' set to 100 to
 | 
						|
*>     permit convergence using approximate factorizations or
 | 
						|
*>     factorizations other than LU. If the factorization uses a
 | 
						|
*>     technique other than Gaussian elimination, the guarantees in
 | 
						|
*>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RTHRESH
 | 
						|
*> \verbatim
 | 
						|
*>          RTHRESH is DOUBLE PRECISION
 | 
						|
*>     Determines when to stop refinement if the error estimate stops
 | 
						|
*>     decreasing. Refinement will stop when the next solution no longer
 | 
						|
*>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
 | 
						|
*>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
 | 
						|
*>     default value is 0.5. For 'aggressive' set to 0.9 to permit
 | 
						|
*>     convergence on extremely ill-conditioned matrices. See LAWN 165
 | 
						|
*>     for more details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DZ_UB
 | 
						|
*> \verbatim
 | 
						|
*>          DZ_UB is DOUBLE PRECISION
 | 
						|
*>     Determines when to start considering componentwise convergence.
 | 
						|
*>     Componentwise convergence is only considered after each component
 | 
						|
*>     of the solution Y is stable, which we definte as the relative
 | 
						|
*>     change in each component being less than DZ_UB. The default value
 | 
						|
*>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
 | 
						|
*>     more details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IGNORE_CWISE
 | 
						|
*> \verbatim
 | 
						|
*>          IGNORE_CWISE is LOGICAL
 | 
						|
*>     If .TRUE. then ignore componentwise convergence. Default value
 | 
						|
*>     is .FALSE..
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>       = 0:  Successful exit.
 | 
						|
*>       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal
 | 
						|
*>             value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup doubleGBcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
 | 
						|
     $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
 | 
						|
     $                                COLEQU, C, B, LDB, Y, LDY,
 | 
						|
     $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
 | 
						|
     $                                ERR_BNDS_COMP, RES, AYB, DY,
 | 
						|
     $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
 | 
						|
     $                                DZ_UB, IGNORE_CWISE, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
 | 
						|
     $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
 | 
						|
      LOGICAL            COLEQU, IGNORE_CWISE
 | 
						|
      DOUBLE PRECISION   RTHRESH, DZ_UB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
 | 
						|
     $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
 | 
						|
      DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
 | 
						|
     $                   ERR_BNDS_NORM( NRHS, * ),
 | 
						|
     $                   ERR_BNDS_COMP( NRHS, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
 | 
						|
      DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
 | 
						|
     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
 | 
						|
     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
 | 
						|
     $                   EPS, HUGEVAL, INCR_THRESH
 | 
						|
      LOGICAL            INCR_PREC
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
 | 
						|
     $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
 | 
						|
     $                   EXTRA_Y
 | 
						|
      PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
 | 
						|
     $                   CONV_STATE = 2, NOPROG_STATE = 3 )
 | 
						|
      PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
 | 
						|
     $                   EXTRA_Y = 2 )
 | 
						|
      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
 | 
						|
      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
 | 
						|
      INTEGER            CMP_ERR_I, PIV_GROWTH_I
 | 
						|
      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
 | 
						|
     $                   BERR_I = 3 )
 | 
						|
      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
 | 
						|
      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
 | 
						|
     $                   PIV_GROWTH_I = 9 )
 | 
						|
      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
 | 
						|
     $                   LA_LINRX_CWISE_I
 | 
						|
      PARAMETER          ( LA_LINRX_ITREF_I = 1,
 | 
						|
     $                   LA_LINRX_ITHRESH_I = 2 )
 | 
						|
      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
 | 
						|
      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
 | 
						|
     $                   LA_LINRX_RCOND_I
 | 
						|
      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
 | 
						|
      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DCOPY, DGBTRS, DGBMV, BLAS_DGBMV_X,
 | 
						|
     $                   BLAS_DGBMV2_X, DLA_GBAMV, DLA_WWADDW, DLAMCH,
 | 
						|
     $                   CHLA_TRANSTYPE, DLA_LIN_BERR
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      CHARACTER          CHLA_TRANSTYPE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF (INFO.NE.0) RETURN
 | 
						|
      TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      HUGEVAL = DLAMCH( 'Overflow' )
 | 
						|
*     Force HUGEVAL to Inf
 | 
						|
      HUGEVAL = HUGEVAL * HUGEVAL
 | 
						|
*     Using HUGEVAL may lead to spurious underflows.
 | 
						|
      INCR_THRESH = DBLE( N ) * EPS
 | 
						|
      M = KL+KU+1
 | 
						|
 | 
						|
      DO J = 1, NRHS
 | 
						|
         Y_PREC_STATE = EXTRA_RESIDUAL
 | 
						|
         IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
 | 
						|
            DO I = 1, N
 | 
						|
               Y_TAIL( I ) = 0.0D+0
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
 | 
						|
         DXRAT = 0.0D+0
 | 
						|
         DXRATMAX = 0.0D+0
 | 
						|
         DZRAT = 0.0D+0
 | 
						|
         DZRATMAX = 0.0D+0
 | 
						|
         FINAL_DX_X = HUGEVAL
 | 
						|
         FINAL_DZ_Z = HUGEVAL
 | 
						|
         PREVNORMDX = HUGEVAL
 | 
						|
         PREV_DZ_Z = HUGEVAL
 | 
						|
         DZ_Z = HUGEVAL
 | 
						|
         DX_X = HUGEVAL
 | 
						|
 | 
						|
         X_STATE = WORKING_STATE
 | 
						|
         Z_STATE = UNSTABLE_STATE
 | 
						|
         INCR_PREC = .FALSE.
 | 
						|
 | 
						|
         DO CNT = 1, ITHRESH
 | 
						|
*
 | 
						|
*        Compute residual RES = B_s - op(A_s) * Y,
 | 
						|
*            op(A) = A, A**T, or A**H depending on TRANS (and type).
 | 
						|
*
 | 
						|
            CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
 | 
						|
            IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
 | 
						|
               CALL DGBMV( TRANS, M, N, KL, KU, -1.0D+0, AB, LDAB,
 | 
						|
     $              Y( 1, J ), 1, 1.0D+0, RES, 1 )
 | 
						|
            ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
 | 
						|
               CALL BLAS_DGBMV_X( TRANS_TYPE, N, N, KL, KU,
 | 
						|
     $              -1.0D+0, AB, LDAB, Y( 1, J ), 1, 1.0D+0, RES, 1,
 | 
						|
     $              PREC_TYPE )
 | 
						|
            ELSE
 | 
						|
               CALL BLAS_DGBMV2_X( TRANS_TYPE, N, N, KL, KU, -1.0D+0,
 | 
						|
     $              AB, LDAB, Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1,
 | 
						|
     $              PREC_TYPE )
 | 
						|
            END IF
 | 
						|
 | 
						|
!        XXX: RES is no longer needed.
 | 
						|
            CALL DCOPY( N, RES, 1, DY, 1 )
 | 
						|
            CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
 | 
						|
     $           INFO )
 | 
						|
*
 | 
						|
*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
 | 
						|
*
 | 
						|
            NORMX = 0.0D+0
 | 
						|
            NORMY = 0.0D+0
 | 
						|
            NORMDX = 0.0D+0
 | 
						|
            DZ_Z = 0.0D+0
 | 
						|
            YMIN = HUGEVAL
 | 
						|
 | 
						|
            DO I = 1, N
 | 
						|
               YK = ABS( Y( I, J ) )
 | 
						|
               DYK = ABS( DY( I ) )
 | 
						|
 | 
						|
               IF ( YK .NE. 0.0D+0 ) THEN
 | 
						|
                  DZ_Z = MAX( DZ_Z, DYK / YK )
 | 
						|
               ELSE IF ( DYK .NE. 0.0D+0 ) THEN
 | 
						|
                  DZ_Z = HUGEVAL
 | 
						|
               END IF
 | 
						|
 | 
						|
               YMIN = MIN( YMIN, YK )
 | 
						|
 | 
						|
               NORMY = MAX( NORMY, YK )
 | 
						|
 | 
						|
               IF ( COLEQU ) THEN
 | 
						|
                  NORMX = MAX( NORMX, YK * C( I ) )
 | 
						|
                  NORMDX = MAX( NORMDX, DYK * C( I ) )
 | 
						|
               ELSE
 | 
						|
                  NORMX = NORMY
 | 
						|
                  NORMDX = MAX( NORMDX, DYK )
 | 
						|
               END IF
 | 
						|
            END DO
 | 
						|
 | 
						|
            IF ( NORMX .NE. 0.0D+0 ) THEN
 | 
						|
               DX_X = NORMDX / NORMX
 | 
						|
            ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
 | 
						|
               DX_X = 0.0D+0
 | 
						|
            ELSE
 | 
						|
               DX_X = HUGEVAL
 | 
						|
            END IF
 | 
						|
 | 
						|
            DXRAT = NORMDX / PREVNORMDX
 | 
						|
            DZRAT = DZ_Z / PREV_DZ_Z
 | 
						|
*
 | 
						|
*         Check termination criteria.
 | 
						|
*
 | 
						|
            IF ( .NOT.IGNORE_CWISE
 | 
						|
     $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
 | 
						|
     $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
 | 
						|
     $           INCR_PREC = .TRUE.
 | 
						|
 | 
						|
            IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
 | 
						|
     $           X_STATE = WORKING_STATE
 | 
						|
            IF ( X_STATE .EQ. WORKING_STATE ) THEN
 | 
						|
               IF ( DX_X .LE. EPS ) THEN
 | 
						|
                  X_STATE = CONV_STATE
 | 
						|
               ELSE IF ( DXRAT .GT. RTHRESH ) THEN
 | 
						|
                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
 | 
						|
                     INCR_PREC = .TRUE.
 | 
						|
                  ELSE
 | 
						|
                     X_STATE = NOPROG_STATE
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
 | 
						|
               END IF
 | 
						|
               IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
 | 
						|
            END IF
 | 
						|
 | 
						|
            IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
 | 
						|
     $           Z_STATE = WORKING_STATE
 | 
						|
            IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
 | 
						|
     $           Z_STATE = WORKING_STATE
 | 
						|
            IF ( Z_STATE .EQ. WORKING_STATE ) THEN
 | 
						|
               IF ( DZ_Z .LE. EPS ) THEN
 | 
						|
                  Z_STATE = CONV_STATE
 | 
						|
               ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
 | 
						|
                  Z_STATE = UNSTABLE_STATE
 | 
						|
                  DZRATMAX = 0.0D+0
 | 
						|
                  FINAL_DZ_Z = HUGEVAL
 | 
						|
               ELSE IF ( DZRAT .GT. RTHRESH ) THEN
 | 
						|
                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
 | 
						|
                     INCR_PREC = .TRUE.
 | 
						|
                  ELSE
 | 
						|
                     Z_STATE = NOPROG_STATE
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
 | 
						|
               END IF
 | 
						|
               IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Exit if both normwise and componentwise stopped working,
 | 
						|
*           but if componentwise is unstable, let it go at least two
 | 
						|
*           iterations.
 | 
						|
*
 | 
						|
            IF ( X_STATE.NE.WORKING_STATE ) THEN
 | 
						|
               IF ( IGNORE_CWISE ) GOTO 666
 | 
						|
               IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
 | 
						|
     $              GOTO 666
 | 
						|
               IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
 | 
						|
            END IF
 | 
						|
 | 
						|
            IF ( INCR_PREC ) THEN
 | 
						|
               INCR_PREC = .FALSE.
 | 
						|
               Y_PREC_STATE = Y_PREC_STATE + 1
 | 
						|
               DO I = 1, N
 | 
						|
                  Y_TAIL( I ) = 0.0D+0
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
 | 
						|
            PREVNORMDX = NORMDX
 | 
						|
            PREV_DZ_Z = DZ_Z
 | 
						|
*
 | 
						|
*           Update soluton.
 | 
						|
*
 | 
						|
            IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
 | 
						|
               CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
 | 
						|
            ELSE
 | 
						|
               CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
 | 
						|
            END IF
 | 
						|
 | 
						|
         END DO
 | 
						|
*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
 | 
						|
 666     CONTINUE
 | 
						|
*
 | 
						|
*     Set final_* when cnt hits ithresh.
 | 
						|
*
 | 
						|
         IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
 | 
						|
         IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
 | 
						|
*
 | 
						|
*     Compute error bounds.
 | 
						|
*
 | 
						|
         IF ( N_NORMS .GE. 1 ) THEN
 | 
						|
            ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
 | 
						|
     $           FINAL_DX_X / (1 - DXRATMAX)
 | 
						|
         END IF
 | 
						|
         IF (N_NORMS .GE. 2) THEN
 | 
						|
            ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
 | 
						|
     $           FINAL_DZ_Z / (1 - DZRATMAX)
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*     Compute componentwise relative backward error from formula
 | 
						|
*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
 | 
						|
*     where abs(Z) is the componentwise absolute value of the matrix
 | 
						|
*     or vector Z.
 | 
						|
*
 | 
						|
*        Compute residual RES = B_s - op(A_s) * Y,
 | 
						|
*            op(A) = A, A**T, or A**H depending on TRANS (and type).
 | 
						|
*
 | 
						|
         CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
 | 
						|
         CALL DGBMV(TRANS, N, N, KL, KU, -1.0D+0, AB, LDAB, Y(1,J),
 | 
						|
     $        1, 1.0D+0, RES, 1 )
 | 
						|
 | 
						|
         DO I = 1, N
 | 
						|
            AYB( I ) = ABS( B( I, J ) )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*     Compute abs(op(A_s))*abs(Y) + abs(B_s).
 | 
						|
*
 | 
						|
        CALL DLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
 | 
						|
     $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
 | 
						|
 | 
						|
         CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
 | 
						|
*
 | 
						|
*     End of loop for each RHS
 | 
						|
*
 | 
						|
      END DO
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
      END
 |