270 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGELQF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGELQF + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelqf.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelqf.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelqf.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGELQF computes an LQ factorization of a complex M-by-N matrix A:
 | 
						|
*> A = L * Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the elements on and below the diagonal of the array
 | 
						|
*>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
 | 
						|
*>          lower triangular if m <= n); the elements above the diagonal,
 | 
						|
*>          with the array TAU, represent the unitary matrix Q as a
 | 
						|
*>          product of elementary reflectors (see Further Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors (see Further
 | 
						|
*>          Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,M).
 | 
						|
*>          For optimum performance LWORK >= M*NB, where NB is the
 | 
						|
*>          optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrix Q is represented as a product of elementary reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H(i) = I - tau * v * v**H
 | 
						|
*>
 | 
						|
*>  where tau is a complex scalar, and v is a complex vector with
 | 
						|
*>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
 | 
						|
*>  A(i,i+1:n), and tau in TAU(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
 | 
						|
     $                   NBMIN, NX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGELQ2, CLARFB, CLARFT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
 | 
						|
      LWKOPT = M*NB
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGELQF', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      K = MIN( M, N )
 | 
						|
      IF( K.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NBMIN = 2
 | 
						|
      NX = 0
 | 
						|
      IWS = M
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
 | 
						|
*
 | 
						|
*        Determine when to cross over from blocked to unblocked code.
 | 
						|
*
 | 
						|
         NX = MAX( 0, ILAENV( 3, 'CGELQF', ' ', M, N, -1, -1 ) )
 | 
						|
         IF( NX.LT.K ) THEN
 | 
						|
*
 | 
						|
*           Determine if workspace is large enough for blocked code.
 | 
						|
*
 | 
						|
            LDWORK = M
 | 
						|
            IWS = LDWORK*NB
 | 
						|
            IF( LWORK.LT.IWS ) THEN
 | 
						|
*
 | 
						|
*              Not enough workspace to use optimal NB:  reduce NB and
 | 
						|
*              determine the minimum value of NB.
 | 
						|
*
 | 
						|
               NB = LWORK / LDWORK
 | 
						|
               NBMIN = MAX( 2, ILAENV( 2, 'CGELQF', ' ', M, N, -1,
 | 
						|
     $                 -1 ) )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
 | 
						|
*
 | 
						|
*        Use blocked code initially
 | 
						|
*
 | 
						|
         DO 10 I = 1, K - NX, NB
 | 
						|
            IB = MIN( K-I+1, NB )
 | 
						|
*
 | 
						|
*           Compute the LQ factorization of the current block
 | 
						|
*           A(i:i+ib-1,i:n)
 | 
						|
*
 | 
						|
            CALL CGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
 | 
						|
     $                   IINFO )
 | 
						|
            IF( I+IB.LE.M ) THEN
 | 
						|
*
 | 
						|
*              Form the triangular factor of the block reflector
 | 
						|
*              H = H(i) H(i+1) . . . H(i+ib-1)
 | 
						|
*
 | 
						|
               CALL CLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
 | 
						|
     $                      LDA, TAU( I ), WORK, LDWORK )
 | 
						|
*
 | 
						|
*              Apply H to A(i+ib:m,i:n) from the right
 | 
						|
*
 | 
						|
               CALL CLARFB( 'Right', 'No transpose', 'Forward',
 | 
						|
     $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
 | 
						|
     $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
 | 
						|
     $                      WORK( IB+1 ), LDWORK )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         I = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Use unblocked code to factor the last or only block.
 | 
						|
*
 | 
						|
      IF( I.LE.K )
 | 
						|
     $   CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
 | 
						|
     $                IINFO )
 | 
						|
*
 | 
						|
      WORK( 1 ) = IWS
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGELQF
 | 
						|
*
 | 
						|
      END
 |