598 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			598 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLARFB_GETT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLARFB_GETT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb_gett.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb_gett.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb_gett.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
 | |
| *      $                        WORK, LDWORK )
 | |
| *       IMPLICIT NONE
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          IDENT
 | |
| *       INTEGER            K, LDA, LDB, LDT, LDWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), T( LDT, * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLARFB_GETT applies a complex Householder block reflector H from the
 | |
| *> left to a complex (K+M)-by-N  "triangular-pentagonal" matrix
 | |
| *> composed of two block matrices: an upper trapezoidal K-by-N matrix A
 | |
| *> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored
 | |
| *> in the array B. The block reflector H is stored in a compact
 | |
| *> WY-representation, where the elementary reflectors are in the
 | |
| *> arrays A, B and T. See Further Details section.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IDENT
 | |
| *> \verbatim
 | |
| *>          IDENT is CHARACTER*1
 | |
| *>          If IDENT = not 'I', or not 'i', then V1 is unit
 | |
| *>             lower-triangular and stored in the left K-by-K block of
 | |
| *>             the input matrix A,
 | |
| *>          If IDENT = 'I' or 'i', then  V1 is an identity matrix and
 | |
| *>             not stored.
 | |
| *>          See Further Details section.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix B.
 | |
| *>          M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B.
 | |
| *>          N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number or rows of the matrix A.
 | |
| *>          K is also order of the matrix T, i.e. the number of
 | |
| *>          elementary reflectors whose product defines the block
 | |
| *>          reflector. 0 <= K <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX*16 array, dimension (LDT,K)
 | |
| *>          The upper-triangular K-by-K matrix T in the representation
 | |
| *>          of the block reflector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>
 | |
| *>          On entry:
 | |
| *>           a) In the K-by-N upper-trapezoidal part A: input matrix A.
 | |
| *>           b) In the columns below the diagonal: columns of V1
 | |
| *>              (ones are not stored on the diagonal).
 | |
| *>
 | |
| *>          On exit:
 | |
| *>            A is overwritten by rectangular K-by-N product H*A.
 | |
| *>
 | |
| *>          See Further Details section.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,K).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,N)
 | |
| *>
 | |
| *>          On entry:
 | |
| *>            a) In the M-by-(N-K) right block: input matrix B.
 | |
| *>            b) In the M-by-N left block: columns of V2.
 | |
| *>
 | |
| *>          On exit:
 | |
| *>            B is overwritten by rectangular M-by-N product H*B.
 | |
| *>
 | |
| *>          See Further Details section.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array,
 | |
| *>          dimension (LDWORK,max(K,N-K))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK. LDWORK>=max(1,K).
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> November 2020, Igor Kozachenko,
 | |
| *>                Computer Science Division,
 | |
| *>                University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    (1) Description of the Algebraic Operation.
 | |
| *>
 | |
| *>    The matrix A is a K-by-N matrix composed of two column block
 | |
| *>    matrices, A1, which is K-by-K, and A2, which is K-by-(N-K):
 | |
| *>    A = ( A1, A2 ).
 | |
| *>    The matrix B is an M-by-N matrix composed of two column block
 | |
| *>    matrices, B1, which is M-by-K, and B2, which is M-by-(N-K):
 | |
| *>    B = ( B1, B2 ).
 | |
| *>
 | |
| *>    Perform the operation:
 | |
| *>
 | |
| *>       ( A_out ) := H * ( A_in ) = ( I - V * T * V**H ) * ( A_in ) =
 | |
| *>       ( B_out )        ( B_in )                          ( B_in )
 | |
| *>                  = ( I - ( V1 ) * T * ( V1**H, V2**H ) ) * ( A_in )
 | |
| *>                          ( V2 )                            ( B_in )
 | |
| *>     On input:
 | |
| *>
 | |
| *>    a) ( A_in )  consists of two block columns:
 | |
| *>       ( B_in )
 | |
| *>
 | |
| *>       ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in ))
 | |
| *>       ( B_in )   (( B1_in ) ( B2_in ))   ((     0 ) ( B2_in )),
 | |
| *>
 | |
| *>       where the column blocks are:
 | |
| *>
 | |
| *>       (  A1_in )  is a K-by-K upper-triangular matrix stored in the
 | |
| *>                   upper triangular part of the array A(1:K,1:K).
 | |
| *>       (  B1_in )  is an M-by-K rectangular ZERO matrix and not stored.
 | |
| *>
 | |
| *>       ( A2_in )  is a K-by-(N-K) rectangular matrix stored
 | |
| *>                  in the array A(1:K,K+1:N).
 | |
| *>       ( B2_in )  is an M-by-(N-K) rectangular matrix stored
 | |
| *>                  in the array B(1:M,K+1:N).
 | |
| *>
 | |
| *>    b) V = ( V1 )
 | |
| *>           ( V2 )
 | |
| *>
 | |
| *>       where:
 | |
| *>       1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored;
 | |
| *>       2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix,
 | |
| *>          stored in the lower-triangular part of the array
 | |
| *>          A(1:K,1:K) (ones are not stored),
 | |
| *>       and V2 is an M-by-K rectangular stored the array B(1:M,1:K),
 | |
| *>                 (because on input B1_in is a rectangular zero
 | |
| *>                  matrix that is not stored and the space is
 | |
| *>                  used to store V2).
 | |
| *>
 | |
| *>    c) T is a K-by-K upper-triangular matrix stored
 | |
| *>       in the array T(1:K,1:K).
 | |
| *>
 | |
| *>    On output:
 | |
| *>
 | |
| *>    a) ( A_out ) consists of two  block columns:
 | |
| *>       ( B_out )
 | |
| *>
 | |
| *>       ( A_out ) = (( A1_out ) ( A2_out ))
 | |
| *>       ( B_out )   (( B1_out ) ( B2_out )),
 | |
| *>
 | |
| *>       where the column blocks are:
 | |
| *>
 | |
| *>       ( A1_out )  is a K-by-K square matrix, or a K-by-K
 | |
| *>                   upper-triangular matrix, if V1 is an
 | |
| *>                   identity matrix. AiOut is stored in
 | |
| *>                   the array A(1:K,1:K).
 | |
| *>       ( B1_out )  is an M-by-K rectangular matrix stored
 | |
| *>                   in the array B(1:M,K:N).
 | |
| *>
 | |
| *>       ( A2_out )  is a K-by-(N-K) rectangular matrix stored
 | |
| *>                   in the array A(1:K,K+1:N).
 | |
| *>       ( B2_out )  is an M-by-(N-K) rectangular matrix stored
 | |
| *>                   in the array B(1:M,K+1:N).
 | |
| *>
 | |
| *>
 | |
| *>    The operation above can be represented as the same operation
 | |
| *>    on each block column:
 | |
| *>
 | |
| *>       ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**H ) * ( A1_in )
 | |
| *>       ( B1_out )        (     0 )                          (     0 )
 | |
| *>
 | |
| *>       ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**H ) * ( A2_in )
 | |
| *>       ( B2_out )        ( B2_in )                          ( B2_in )
 | |
| *>
 | |
| *>    If IDENT != 'I':
 | |
| *>
 | |
| *>       The computation for column block 1:
 | |
| *>
 | |
| *>       A1_out: = A1_in - V1*T*(V1**H)*A1_in
 | |
| *>
 | |
| *>       B1_out: = - V2*T*(V1**H)*A1_in
 | |
| *>
 | |
| *>       The computation for column block 2, which exists if N > K:
 | |
| *>
 | |
| *>       A2_out: = A2_in - V1*T*( (V1**H)*A2_in + (V2**H)*B2_in )
 | |
| *>
 | |
| *>       B2_out: = B2_in - V2*T*( (V1**H)*A2_in + (V2**H)*B2_in )
 | |
| *>
 | |
| *>    If IDENT == 'I':
 | |
| *>
 | |
| *>       The operation for column block 1:
 | |
| *>
 | |
| *>       A1_out: = A1_in - V1*T*A1_in
 | |
| *>
 | |
| *>       B1_out: = - V2*T*A1_in
 | |
| *>
 | |
| *>       The computation for column block 2, which exists if N > K:
 | |
| *>
 | |
| *>       A2_out: = A2_in - T*( A2_in + (V2**H)*B2_in )
 | |
| *>
 | |
| *>       B2_out: = B2_in - V2*T*( A2_in + (V2**H)*B2_in )
 | |
| *>
 | |
| *>    (2) Description of the Algorithmic Computation.
 | |
| *>
 | |
| *>    In the first step, we compute column block 2, i.e. A2 and B2.
 | |
| *>    Here, we need to use the K-by-(N-K) rectangular workspace
 | |
| *>    matrix W2 that is of the same size as the matrix A2.
 | |
| *>    W2 is stored in the array WORK(1:K,1:(N-K)).
 | |
| *>
 | |
| *>    In the second step, we compute column block 1, i.e. A1 and B1.
 | |
| *>    Here, we need to use the K-by-K square workspace matrix W1
 | |
| *>    that is of the same size as the as the matrix A1.
 | |
| *>    W1 is stored in the array WORK(1:K,1:K).
 | |
| *>
 | |
| *>    NOTE: Hence, in this routine, we need the workspace array WORK
 | |
| *>    only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from
 | |
| *>    the first step and W1 from the second step.
 | |
| *>
 | |
| *>    Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I',
 | |
| *>    more computations than in the Case (B).
 | |
| *>
 | |
| *>    if( IDENT != 'I' ) then
 | |
| *>     if ( N > K ) then
 | |
| *>       (First Step - column block 2)
 | |
| *>       col2_(1) W2: = A2
 | |
| *>       col2_(2) W2: = (V1**H) * W2 = (unit_lower_tr_of_(A1)**H) * W2
 | |
| *>       col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
 | |
| *>       col2_(4) W2: = T * W2
 | |
| *>       col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
 | |
| *>       col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
 | |
| *>       col2_(7) A2: = A2 - W2
 | |
| *>     else
 | |
| *>       (Second Step - column block 1)
 | |
| *>       col1_(1) W1: = A1
 | |
| *>       col1_(2) W1: = (V1**H) * W1 = (unit_lower_tr_of_(A1)**H) * W1
 | |
| *>       col1_(3) W1: = T * W1
 | |
| *>       col1_(4) B1: = - V2 * W1 = - B1 * W1
 | |
| *>       col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
 | |
| *>       col1_(6) square A1: = A1 - W1
 | |
| *>     end if
 | |
| *>    end if
 | |
| *>
 | |
| *>    Case (B), when V1 is an identity matrix, i.e. IDENT == 'I',
 | |
| *>    less computations than in the Case (A)
 | |
| *>
 | |
| *>    if( IDENT == 'I' ) then
 | |
| *>     if ( N > K ) then
 | |
| *>       (First Step - column block 2)
 | |
| *>       col2_(1) W2: = A2
 | |
| *>       col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
 | |
| *>       col2_(4) W2: = T * W2
 | |
| *>       col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
 | |
| *>       col2_(7) A2: = A2 - W2
 | |
| *>     else
 | |
| *>       (Second Step - column block 1)
 | |
| *>       col1_(1) W1: = A1
 | |
| *>       col1_(3) W1: = T * W1
 | |
| *>       col1_(4) B1: = - V2 * W1 = - B1 * W1
 | |
| *>       col1_(6) upper-triangular_of_(A1): = A1 - W1
 | |
| *>     end if
 | |
| *>    end if
 | |
| *>
 | |
| *>    Combine these cases (A) and (B) together, this is the resulting
 | |
| *>    algorithm:
 | |
| *>
 | |
| *>    if ( N > K ) then
 | |
| *>
 | |
| *>      (First Step - column block 2)
 | |
| *>
 | |
| *>      col2_(1)  W2: = A2
 | |
| *>      if( IDENT != 'I' ) then
 | |
| *>        col2_(2)  W2: = (V1**H) * W2
 | |
| *>                      = (unit_lower_tr_of_(A1)**H) * W2
 | |
| *>      end if
 | |
| *>      col2_(3)  W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2]
 | |
| *>      col2_(4)  W2: = T * W2
 | |
| *>      col2_(5)  B2: = B2 - V2 * W2 = B2 - B1 * W2
 | |
| *>      if( IDENT != 'I' ) then
 | |
| *>        col2_(6)    W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
 | |
| *>      end if
 | |
| *>      col2_(7) A2: = A2 - W2
 | |
| *>
 | |
| *>    else
 | |
| *>
 | |
| *>    (Second Step - column block 1)
 | |
| *>
 | |
| *>      col1_(1) W1: = A1
 | |
| *>      if( IDENT != 'I' ) then
 | |
| *>        col1_(2) W1: = (V1**H) * W1
 | |
| *>                    = (unit_lower_tr_of_(A1)**H) * W1
 | |
| *>      end if
 | |
| *>      col1_(3) W1: = T * W1
 | |
| *>      col1_(4) B1: = - V2 * W1 = - B1 * W1
 | |
| *>      if( IDENT != 'I' ) then
 | |
| *>        col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
 | |
| *>        col1_(6_a) below_diag_of_(A1): =  - below_diag_of_(W1)
 | |
| *>      end if
 | |
| *>      col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1)
 | |
| *>
 | |
| *>    end if
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
 | |
|      $                        WORK, LDWORK )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          IDENT
 | |
|       INTEGER            K, LDA, LDB, LDT, LDWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), T( LDT, * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | |
|      $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LNOTIDENT
 | |
|       INTEGER            I, J
 | |
| *     ..
 | |
| *     .. EXTERNAL FUNCTIONS ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZCOPY, ZGEMM, ZTRMM
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N )
 | |
|      $   RETURN
 | |
| *
 | |
|       LNOTIDENT = .NOT.LSAME( IDENT, 'I' )
 | |
| *
 | |
| *     ------------------------------------------------------------------
 | |
| *
 | |
| *     First Step. Computation of the Column Block 2:
 | |
| *
 | |
| *        ( A2 ) := H * ( A2 )
 | |
| *        ( B2 )        ( B2 )
 | |
| *
 | |
| *     ------------------------------------------------------------------
 | |
| *
 | |
|       IF( N.GT.K ) THEN
 | |
| *
 | |
| *        col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N)
 | |
| *        into W2=WORK(1:K, 1:N-K) column-by-column.
 | |
| *
 | |
|          DO J = 1, N-K
 | |
|             CALL ZCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 )
 | |
|          END DO
 | |
| 
 | |
|          IF( LNOTIDENT ) THEN
 | |
| *
 | |
| *           col2_(2) Compute W2: = (V1**H) * W2 = (A1**H) * W2,
 | |
| *           V1 is not an identity matrix, but unit lower-triangular
 | |
| *           V1 stored in A1 (diagonal ones are not stored).
 | |
| *
 | |
| *
 | |
|             CALL ZTRMM( 'L', 'L', 'C', 'U', K, N-K, CONE, A, LDA,
 | |
|      $                  WORK, LDWORK )
 | |
|          END IF
 | |
| *
 | |
| *        col2_(3) Compute W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
 | |
| *        V2 stored in B1.
 | |
| *
 | |
|          IF( M.GT.0 ) THEN
 | |
|             CALL ZGEMM( 'C', 'N', K, N-K, M, CONE, B, LDB,
 | |
|      $                  B( 1, K+1 ), LDB, CONE, WORK, LDWORK )
 | |
|          END IF
 | |
| *
 | |
| *        col2_(4) Compute W2: = T * W2,
 | |
| *        T is upper-triangular.
 | |
| *
 | |
|          CALL ZTRMM( 'L', 'U', 'N', 'N', K, N-K, CONE, T, LDT,
 | |
|      $               WORK, LDWORK )
 | |
| *
 | |
| *        col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2,
 | |
| *        V2 stored in B1.
 | |
| *
 | |
|          IF( M.GT.0 ) THEN
 | |
|             CALL ZGEMM( 'N', 'N', M, N-K, K, -CONE, B, LDB,
 | |
|      $                   WORK, LDWORK, CONE, B( 1, K+1 ), LDB )
 | |
|          END IF
 | |
| *
 | |
|          IF( LNOTIDENT ) THEN
 | |
| *
 | |
| *           col2_(6) Compute W2: = V1 * W2 = A1 * W2,
 | |
| *           V1 is not an identity matrix, but unit lower-triangular,
 | |
| *           V1 stored in A1 (diagonal ones are not stored).
 | |
| *
 | |
|             CALL ZTRMM( 'L', 'L', 'N', 'U', K, N-K, CONE, A, LDA,
 | |
|      $                  WORK, LDWORK )
 | |
|          END IF
 | |
| *
 | |
| *        col2_(7) Compute A2: = A2 - W2 =
 | |
| *                             = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K),
 | |
| *        column-by-column.
 | |
| *
 | |
|          DO J = 1, N-K
 | |
|             DO I = 1, K
 | |
|                A( I, K+J ) = A( I, K+J ) - WORK( I, J )
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     ------------------------------------------------------------------
 | |
| *
 | |
| *     Second Step. Computation of the Column Block 1:
 | |
| *
 | |
| *        ( A1 ) := H * ( A1 )
 | |
| *        ( B1 )        (  0 )
 | |
| *
 | |
| *     ------------------------------------------------------------------
 | |
| *
 | |
| *     col1_(1) Compute W1: = A1. Copy the upper-triangular
 | |
| *     A1 = A(1:K, 1:K) into the upper-triangular
 | |
| *     W1 = WORK(1:K, 1:K) column-by-column.
 | |
| *
 | |
|       DO J = 1, K
 | |
|          CALL ZCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 )
 | |
|       END DO
 | |
| *
 | |
| *     Set the subdiagonal elements of W1 to zero column-by-column.
 | |
| *
 | |
|       DO J = 1, K - 1
 | |
|          DO I = J + 1, K
 | |
|             WORK( I, J ) = CZERO
 | |
|          END DO
 | |
|       END DO
 | |
| *
 | |
|       IF( LNOTIDENT ) THEN
 | |
| *
 | |
| *        col1_(2) Compute W1: = (V1**H) * W1 = (A1**H) * W1,
 | |
| *        V1 is not an identity matrix, but unit lower-triangular
 | |
| *        V1 stored in A1 (diagonal ones are not stored),
 | |
| *        W1 is upper-triangular with zeroes below the diagonal.
 | |
| *
 | |
|          CALL ZTRMM( 'L', 'L', 'C', 'U', K, K, CONE, A, LDA,
 | |
|      $               WORK, LDWORK )
 | |
|       END IF
 | |
| *
 | |
| *     col1_(3) Compute W1: = T * W1,
 | |
| *     T is upper-triangular,
 | |
| *     W1 is upper-triangular with zeroes below the diagonal.
 | |
| *
 | |
|       CALL ZTRMM( 'L', 'U', 'N', 'N', K, K, CONE, T, LDT,
 | |
|      $            WORK, LDWORK )
 | |
| *
 | |
| *     col1_(4) Compute B1: = - V2 * W1 = - B1 * W1,
 | |
| *     V2 = B1, W1 is upper-triangular with zeroes below the diagonal.
 | |
| *
 | |
|       IF( M.GT.0 ) THEN
 | |
|          CALL ZTRMM( 'R', 'U', 'N', 'N', M, K, -CONE, WORK, LDWORK,
 | |
|      $               B, LDB )
 | |
|       END IF
 | |
| *
 | |
|       IF( LNOTIDENT ) THEN
 | |
| *
 | |
| *        col1_(5) Compute W1: = V1 * W1 = A1 * W1,
 | |
| *        V1 is not an identity matrix, but unit lower-triangular
 | |
| *        V1 stored in A1 (diagonal ones are not stored),
 | |
| *        W1 is upper-triangular on input with zeroes below the diagonal,
 | |
| *        and square on output.
 | |
| *
 | |
|          CALL ZTRMM( 'L', 'L', 'N', 'U', K, K, CONE, A, LDA,
 | |
|      $               WORK, LDWORK )
 | |
| *
 | |
| *        col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K)
 | |
| *        column-by-column. A1 is upper-triangular on input.
 | |
| *        If IDENT, A1 is square on output, and W1 is square,
 | |
| *        if NOT IDENT, A1 is upper-triangular on output,
 | |
| *        W1 is upper-triangular.
 | |
| *
 | |
| *        col1_(6)_a Compute elements of A1 below the diagonal.
 | |
| *
 | |
|          DO J = 1, K - 1
 | |
|             DO I = J + 1, K
 | |
|                A( I, J ) = - WORK( I, J )
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     col1_(6)_b Compute elements of A1 on and above the diagonal.
 | |
| *
 | |
|       DO J = 1, K
 | |
|          DO I = 1, J
 | |
|             A( I, J ) = A( I, J ) - WORK( I, J )
 | |
|          END DO
 | |
|       END DO
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLARFB_GETT
 | |
| *
 | |
|       END
 |