310 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			310 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSYTRS_AA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSYTRS_AA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrs_aa.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrs_aa.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrs_aa.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
 | |
| *                             WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSYTRS_AA solves a system of linear equations A*X = B with a complex
 | |
| *> symmetric matrix A using the factorization A = U**T*T*U or
 | |
| *> A = L*T*L**T computed by CSYTRF_AA.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U**T*T*U;
 | |
| *>          = 'L':  Lower triangular, form is A = L*T*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          Details of factors computed by CSYTRF_AA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges as computed by CSYTRF_AA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side matrix B.
 | |
| *>          On exit, the solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,3*N-2).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
 | |
|      $                      WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
|       COMPLEX            ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER
 | |
|       INTEGER            K, KP, LWKOPT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLACPY, CGTSV, CSWAP, CTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSYTRS_AA', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          LWKOPT = (3*N-2)
 | |
|          WORK( 1 ) = LWKOPT
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Solve A*X = B, where A = U**T*T*U.
 | |
| *
 | |
| *        1) Forward substitution with U**T
 | |
| *
 | |
|          IF( N.GT.1 ) THEN
 | |
| *
 | |
| *           Pivot, P**T * B -> B
 | |
| *
 | |
|             DO K = 1, N
 | |
|                KP = IPIV( K )
 | |
|                IF( KP.NE.K )
 | |
|      $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             END DO
 | |
| *
 | |
| *           Compute U**T \ B -> B    [ (U**T \P**T * B) ]
 | |
| *
 | |
|             CALL CTRSM( 'L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
 | |
|      $                  LDA, B( 2, 1 ), LDB)
 | |
|          END IF
 | |
| *
 | |
| *        2) Solve with triangular matrix T
 | |
| *
 | |
| *        Compute T \ B -> B   [ T \ (U**T \P**T * B) ]
 | |
| *
 | |
|          CALL CLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
 | |
|          IF( N.GT.1 ) THEN
 | |
|             CALL CLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
 | |
|             CALL CLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1 )
 | |
|          END IF
 | |
|          CALL CGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
 | |
|      $               INFO )
 | |
| *
 | |
| *        3) Backward substitution with U
 | |
| *
 | |
|          IF( N.GT.1 ) THEN
 | |
| *
 | |
| *           Compute U \ B -> B   [ U \ (T \ (U**T \P**T * B) ) ]
 | |
| *
 | |
|             CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
 | |
|      $                  LDA, B( 2, 1 ), LDB)
 | |
| *
 | |
| *           Pivot, P * B -> B  [ P * (U**T \ (T \ (U \P**T * B) )) ]
 | |
| *
 | |
|             DO K = N, 1, -1
 | |
|                KP = IPIV( K )
 | |
|                IF( KP.NE.K )
 | |
|      $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             END DO
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Solve A*X = B, where A = L*T*L**T.
 | |
| *
 | |
| *        1) Forward substitution with L
 | |
| *
 | |
|          IF( N.GT.1 ) THEN
 | |
| *
 | |
| *           Pivot, P**T * B -> B
 | |
| *
 | |
|             DO K = 1, N
 | |
|                KP = IPIV( K )
 | |
|                IF( KP.NE.K )
 | |
|      $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             END DO
 | |
| *
 | |
| *           Compute L \ B -> B    [ (L \P**T * B) ]
 | |
| *
 | |
|             CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
 | |
|      $                  LDA, B( 2, 1 ), LDB)
 | |
|          END IF
 | |
| *
 | |
| *        2) Solve with triangular matrix T
 | |
| *
 | |
| *
 | |
| *        Compute T \ B -> B   [ T \ (L \P**T * B) ]
 | |
| *
 | |
|          CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
 | |
|          IF( N.GT.1 ) THEN
 | |
|             CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
 | |
|             CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1 )
 | |
|          END IF
 | |
|          CALL CGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
 | |
|      $               INFO)
 | |
| *
 | |
| *        3) Backward substitution with L**T
 | |
| *
 | |
|          IF( N.GT.1 ) THEN
 | |
| *
 | |
| *           Compute (L**T \ B) -> B   [ L**T \ (T \ (L \P**T * B) ) ]
 | |
| *
 | |
|             CALL CTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
 | |
|      $                  LDA, B( 2, 1 ), LDB)
 | |
| *
 | |
| *           Pivot, P * B -> B  [ P * (L**T \ (T \ (L \P**T * B) )) ]
 | |
| *
 | |
|             DO K = N, 1, -1
 | |
|                KP = IPIV( K )
 | |
|                IF( KP.NE.K )
 | |
|      $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             END DO
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSYTRS_AA
 | |
| *
 | |
|       END
 |