414 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			414 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGEBAL
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEBAL + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebal.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebal.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebal.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOB
 | |
| *       INTEGER            IHI, ILO, INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), SCALE( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGEBAL balances a general real matrix A.  This involves, first,
 | |
| *> permuting A by a similarity transformation to isolate eigenvalues
 | |
| *> in the first 1 to ILO-1 and last IHI+1 to N elements on the
 | |
| *> diagonal; and second, applying a diagonal similarity transformation
 | |
| *> to rows and columns ILO to IHI to make the rows and columns as
 | |
| *> close in norm as possible.  Both steps are optional.
 | |
| *>
 | |
| *> Balancing may reduce the 1-norm of the matrix, and improve the
 | |
| *> accuracy of the computed eigenvalues and/or eigenvectors.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          Specifies the operations to be performed on A:
 | |
| *>          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
 | |
| *>                  for i = 1,...,N;
 | |
| *>          = 'P':  permute only;
 | |
| *>          = 'S':  scale only;
 | |
| *>          = 'B':  both permute and scale.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the input matrix A.
 | |
| *>          On exit,  A is overwritten by the balanced matrix.
 | |
| *>          If JOB = 'N', A is not referenced.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *> \param[out] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>          ILO and IHI are set to integers such that on exit
 | |
| *>          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
 | |
| *>          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Details of the permutations and scaling factors applied to
 | |
| *>          A.  If P(j) is the index of the row and column interchanged
 | |
| *>          with row and column j and D(j) is the scaling factor
 | |
| *>          applied to row and column j, then
 | |
| *>          SCALE(j) = P(j)    for j = 1,...,ILO-1
 | |
| *>                   = D(j)    for j = ILO,...,IHI
 | |
| *>                   = P(j)    for j = IHI+1,...,N.
 | |
| *>          The order in which the interchanges are made is N to IHI+1,
 | |
| *>          then 1 to ILO-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The permutations consist of row and column interchanges which put
 | |
| *>  the matrix in the form
 | |
| *>
 | |
| *>             ( T1   X   Y  )
 | |
| *>     P A P = (  0   B   Z  )
 | |
| *>             (  0   0   T2 )
 | |
| *>
 | |
| *>  where T1 and T2 are upper triangular matrices whose eigenvalues lie
 | |
| *>  along the diagonal.  The column indices ILO and IHI mark the starting
 | |
| *>  and ending columns of the submatrix B. Balancing consists of applying
 | |
| *>  a diagonal similarity transformation inv(D) * B * D to make the
 | |
| *>  1-norms of each row of B and its corresponding column nearly equal.
 | |
| *>  The output matrix is
 | |
| *>
 | |
| *>     ( T1     X*D          Y    )
 | |
| *>     (  0  inv(D)*B*D  inv(D)*Z ).
 | |
| *>     (  0      0           T2   )
 | |
| *>
 | |
| *>  Information about the permutations P and the diagonal matrix D is
 | |
| *>  returned in the vector SCALE.
 | |
| *>
 | |
| *>  This subroutine is based on the EISPACK routine BALANC.
 | |
| *>
 | |
| *>  Modified by Tzu-Yi Chen, Computer Science Division, University of
 | |
| *>    California at Berkeley, USA
 | |
| *>
 | |
| *>  Refactored by Evert Provoost, Department of Computer Science,
 | |
| *>    KU Leuven, Belgium
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOB
 | |
|       INTEGER            IHI, ILO, INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), SCALE( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       DOUBLE PRECISION   SCLFAC
 | |
|       PARAMETER          ( SCLFAC = 2.0D+0 )
 | |
|       DOUBLE PRECISION   FACTOR
 | |
|       PARAMETER          ( FACTOR = 0.95D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOCONV, CANSWAP
 | |
|       INTEGER            I, ICA, IRA, J, K, L
 | |
|       DOUBLE PRECISION   C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
 | |
|      $                   SFMIN2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            DISNAN, LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DNRM2
 | |
|       EXTERNAL           DISNAN, LSAME, IDAMAX, DLAMCH, DNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSCAL, DSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
 | |
|      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEBAL', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick returns.
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          ILO = 1
 | |
|          IHI = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOB, 'N' ) ) THEN
 | |
|          DO I = 1, N
 | |
|             SCALE( I ) = ONE
 | |
|          END DO
 | |
|          ILO = 1
 | |
|          IHI = N
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Permutation to isolate eigenvalues if possible.
 | |
| *
 | |
|       K = 1
 | |
|       L = N
 | |
| *
 | |
|       IF( .NOT.LSAME( JOB, 'S' ) ) THEN
 | |
| *
 | |
| *        Row and column exchange.
 | |
| *
 | |
|          NOCONV = .TRUE.
 | |
|          DO WHILE( NOCONV )
 | |
| *
 | |
| *           Search for rows isolating an eigenvalue and push them down.
 | |
| *
 | |
|             NOCONV = .FALSE.
 | |
|             DO I = L, 1, -1
 | |
|                CANSWAP = .TRUE.
 | |
|                DO J = 1, L
 | |
|                   IF( I.NE.J .AND. A( I, J ).NE.ZERO ) THEN
 | |
|                      CANSWAP = .FALSE.
 | |
|                      EXIT
 | |
|                   END IF
 | |
|                END DO
 | |
| *
 | |
|                IF( CANSWAP ) THEN
 | |
|                   SCALE( L ) = I
 | |
|                   IF( I.NE.L ) THEN
 | |
|                      CALL DSWAP( L, A( 1, I ), 1, A( 1, L ), 1 )
 | |
|                      CALL DSWAP( N-K+1, A( I, K ), LDA, A( L, K ), LDA )
 | |
|                   END IF
 | |
|                   NOCONV = .TRUE.
 | |
| *
 | |
|                   IF( L.EQ.1 ) THEN
 | |
|                      ILO = 1
 | |
|                      IHI = 1
 | |
|                      RETURN
 | |
|                   END IF
 | |
| *
 | |
|                   L = L - 1
 | |
|                END IF
 | |
|             END DO
 | |
| *
 | |
|          END DO
 | |
| 
 | |
|          NOCONV = .TRUE.
 | |
|          DO WHILE( NOCONV )
 | |
| *
 | |
| *           Search for columns isolating an eigenvalue and push them left.
 | |
| *
 | |
|             NOCONV = .FALSE.
 | |
|             DO J = K, L
 | |
|                CANSWAP = .TRUE.
 | |
|                DO I = K, L
 | |
|                   IF( I.NE.J .AND. A( I, J ).NE.ZERO ) THEN
 | |
|                      CANSWAP = .FALSE.
 | |
|                      EXIT
 | |
|                   END IF
 | |
|                END DO
 | |
| *
 | |
|                IF( CANSWAP ) THEN
 | |
|                   SCALE( K ) = J
 | |
|                   IF( J.NE.K ) THEN
 | |
|                      CALL DSWAP( L, A( 1, J ), 1, A( 1, K ), 1 )
 | |
|                      CALL DSWAP( N-K+1, A( J, K ), LDA, A( K, K ), LDA )
 | |
|                   END IF
 | |
|                   NOCONV = .TRUE.
 | |
| *
 | |
|                   K = K + 1
 | |
|                END IF
 | |
|             END DO
 | |
| *
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Initialize SCALE for non-permuted submatrix.
 | |
| *
 | |
|       DO I = K, L
 | |
|          SCALE( I ) = ONE
 | |
|       END DO
 | |
| *
 | |
| *     If we only had to permute, we are done.
 | |
| *
 | |
|       IF( LSAME( JOB, 'P' ) ) THEN
 | |
|          ILO = K
 | |
|          IHI = L
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Balance the submatrix in rows K to L.
 | |
| *
 | |
| *     Iterative loop for norm reduction.
 | |
| *
 | |
|       SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
 | |
|       SFMAX1 = ONE / SFMIN1
 | |
|       SFMIN2 = SFMIN1*SCLFAC
 | |
|       SFMAX2 = ONE / SFMIN2
 | |
| *
 | |
|       NOCONV = .TRUE.
 | |
|       DO WHILE( NOCONV )
 | |
|          NOCONV = .FALSE.
 | |
| *
 | |
|          DO I = K, L
 | |
| *
 | |
|             C = DNRM2( L-K+1, A( K, I ), 1 )
 | |
|             R = DNRM2( L-K+1, A( I, K ), LDA )
 | |
|             ICA = IDAMAX( L, A( 1, I ), 1 )
 | |
|             CA = ABS( A( ICA, I ) )
 | |
|             IRA = IDAMAX( N-K+1, A( I, K ), LDA )
 | |
|             RA = ABS( A( I, IRA+K-1 ) )
 | |
| *
 | |
| *           Guard against zero C or R due to underflow.
 | |
| *
 | |
|             IF( C.EQ.ZERO .OR. R.EQ.ZERO ) CYCLE
 | |
| *
 | |
| *           Exit if NaN to avoid infinite loop
 | |
| *
 | |
|             IF( DISNAN( C+CA+R+RA ) ) THEN
 | |
|                INFO = -3
 | |
|                CALL XERBLA( 'DGEBAL', -INFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|             G = R / SCLFAC
 | |
|             F = ONE
 | |
|             S = C + R
 | |
| *
 | |
|             DO WHILE( C.LT.G .AND. MAX( F, C, CA ).LT.SFMAX2 .AND.
 | |
|      $                MIN( R, G, RA ).GT.SFMIN2 )
 | |
|                F = F*SCLFAC
 | |
|                C = C*SCLFAC
 | |
|                CA = CA*SCLFAC
 | |
|                R = R / SCLFAC
 | |
|                G = G / SCLFAC
 | |
|                RA = RA / SCLFAC
 | |
|             END DO
 | |
| *
 | |
|             G = C / SCLFAC
 | |
| *
 | |
|             DO WHILE( G.GE.R .AND. MAX( R, RA ).LT.SFMAX2 .AND.
 | |
|      $                MIN( F, C, G, CA ).GT.SFMIN2 )
 | |
|                F = F / SCLFAC
 | |
|                C = C / SCLFAC
 | |
|                G = G / SCLFAC
 | |
|                CA = CA / SCLFAC
 | |
|                R = R*SCLFAC
 | |
|                RA = RA*SCLFAC
 | |
|             END DO
 | |
| *
 | |
| *           Now balance.
 | |
| *
 | |
|             IF( ( C+R ).GE.FACTOR*S ) CYCLE
 | |
|             IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
 | |
|                IF( F*SCALE( I ).LE.SFMIN1 ) CYCLE
 | |
|             END IF
 | |
|             IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
 | |
|                IF( SCALE( I ).GE.SFMAX1 / F ) CYCLE
 | |
|             END IF
 | |
|             G = ONE / F
 | |
|             SCALE( I ) = SCALE( I )*F
 | |
|             NOCONV = .TRUE.
 | |
| *
 | |
|             CALL DSCAL( N-K+1, G, A( I, K ), LDA )
 | |
|             CALL DSCAL( L, F, A( 1, I ), 1 )
 | |
| *
 | |
|          END DO
 | |
| *
 | |
|       END DO
 | |
| *
 | |
|       ILO = K
 | |
|       IHI = L
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEBAL
 | |
| *
 | |
|       END
 |