200 lines
9.2 KiB
C
200 lines
9.2 KiB
C
/***************************************************************************
|
|
Copyright (c) 2013, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) vsetvl_e32m4(n)
|
|
#define VSETVL_MAX vsetvlmax_e32m1()
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define FLOAT_V_T_M1 vfloat32m1_t
|
|
#define VFMVFS_FLOAT vfmv_f_s_f32m1_f32
|
|
#define VLSEV_FLOAT vlse32_v_f32m4
|
|
#define VSSEV_FLOAT vsse32_v_f32m4
|
|
#define VFREDSUM_FLOAT vfredusum_vs_f32m4_f32m1
|
|
#define VFMACCVV_FLOAT vfmacc_vv_f32m4
|
|
#define VFMACCVF_FLOAT vfmacc_vf_f32m4
|
|
#define VFMVVF_FLOAT vfmv_v_f_f32m4
|
|
#define VFMVVF_FLOAT_M1 vfmv_v_f_f32m1
|
|
#define VFMULVV_FLOAT vfmul_vv_f32m4
|
|
#define VFNMSACVF_FLOAT vfnmsac_vf_f32m4
|
|
#define VFNMSACVV_FLOAT vfnmsac_vv_f32m4
|
|
#else
|
|
#define VSETVL(n) vsetvl_e64m4(n)
|
|
#define VSETVL_MAX vsetvlmax_e64m1()
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define FLOAT_V_T_M1 vfloat64m1_t
|
|
#define VFMVFS_FLOAT vfmv_f_s_f64m1_f64
|
|
#define VLSEV_FLOAT vlse64_v_f64m4
|
|
#define VSSEV_FLOAT vsse64_v_f64m4
|
|
#define VFREDSUM_FLOAT vfredusum_vs_f64m4_f64m1
|
|
#define VFMACCVV_FLOAT vfmacc_vv_f64m4
|
|
#define VFMACCVF_FLOAT vfmacc_vf_f64m4
|
|
#define VFMVVF_FLOAT vfmv_v_f_f64m4
|
|
#define VFMVVF_FLOAT_M1 vfmv_v_f_f64m1
|
|
#define VFMULVV_FLOAT vfmul_vv_f64m4
|
|
#define VFNMSACVF_FLOAT vfnmsac_vf_f64m4
|
|
#define VFNMSACVV_FLOAT vfnmsac_vv_f64m4
|
|
#endif
|
|
|
|
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer){
|
|
BLASLONG i, j, k;
|
|
BLASLONG ix, iy, ia;
|
|
BLASLONG jx, jy, ja;
|
|
FLOAT temp_r1, temp_i1;
|
|
FLOAT temp_r2, temp_i2;
|
|
FLOAT *a_ptr = a;
|
|
unsigned int gvl = 0;
|
|
FLOAT_V_T_M1 v_res, v_z0;
|
|
gvl = VSETVL_MAX;
|
|
v_res = VFMVVF_FLOAT_M1(0, gvl);
|
|
v_z0 = VFMVVF_FLOAT_M1(0, gvl);
|
|
|
|
FLOAT_V_T va0, va1, vx0, vx1, vy0, vy1, vr0, vr1;
|
|
BLASLONG stride_x, stride_y, stride_a, inc_xv, inc_yv, inc_av, lda2;
|
|
|
|
BLASLONG inc_x2 = incx * 2;
|
|
BLASLONG inc_y2 = incy * 2;
|
|
stride_x = inc_x2 * sizeof(FLOAT);
|
|
stride_y = inc_y2 * sizeof(FLOAT);
|
|
stride_a = 2 * sizeof(FLOAT);
|
|
lda2 = lda * 2;
|
|
|
|
BLASLONG m1 = m - offset;
|
|
a_ptr = a + m1 * lda2;
|
|
jx = m1 * inc_x2;
|
|
jy = m1 * inc_y2;
|
|
ja = m1 * 2;
|
|
for(j = m1; j < m; j++){
|
|
temp_r1 = alpha_r * x[jx] - alpha_i * x[jx+1];;
|
|
temp_i1 = alpha_r * x[jx+1] + alpha_i * x[jx];
|
|
temp_r2 = 0;
|
|
temp_i2 = 0;
|
|
ix = 0;
|
|
iy = 0;
|
|
ia = 0;
|
|
i = 0;
|
|
if(j > 0){
|
|
gvl = VSETVL(j);
|
|
inc_xv = incx * gvl * 2;
|
|
inc_yv = incy * gvl * 2;
|
|
inc_av = gvl * 2;
|
|
vr0 = VFMVVF_FLOAT(0, gvl);
|
|
vr1 = VFMVVF_FLOAT(0, gvl);
|
|
for(k = 0; k < j / gvl; k++){
|
|
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl);
|
|
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl);
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
|
|
#ifndef HEMVREV
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
|
#else
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
|
#endif
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
|
|
|
|
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
|
|
#ifndef HEMVREV
|
|
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl);
|
|
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl);
|
|
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl);
|
|
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl);
|
|
#else
|
|
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl);
|
|
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl);
|
|
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl);
|
|
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl);
|
|
|
|
#endif
|
|
i += gvl;
|
|
ix += inc_xv;
|
|
iy += inc_yv;
|
|
ia += inc_av;
|
|
}
|
|
v_res = VFREDSUM_FLOAT(v_res, vr0, v_z0, gvl);
|
|
temp_r2 = VFMVFS_FLOAT(v_res);
|
|
v_res = VFREDSUM_FLOAT(v_res, vr1, v_z0, gvl);
|
|
temp_i2 = VFMVFS_FLOAT(v_res);
|
|
if(i < j){
|
|
gvl = VSETVL(j-i);
|
|
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl);
|
|
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl);
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
|
|
#ifndef HEMVREV
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
|
#else
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
|
#endif
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
|
|
|
|
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
|
|
#ifndef HEMVREV
|
|
vr0 = VFMULVV_FLOAT(vx0, va0, gvl);
|
|
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl);
|
|
vr1 = VFMULVV_FLOAT(vx1, va0, gvl);
|
|
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl);
|
|
#else
|
|
vr0 = VFMULVV_FLOAT(vx0, va0, gvl);
|
|
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl);
|
|
vr1 = VFMULVV_FLOAT(vx1, va0, gvl);
|
|
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl);
|
|
#endif
|
|
|
|
v_res = VFREDSUM_FLOAT(v_res, vr0, v_z0, gvl);
|
|
temp_r2 += VFMVFS_FLOAT(v_res);
|
|
v_res = VFREDSUM_FLOAT(v_res, vr1, v_z0, gvl);
|
|
temp_i2 += VFMVFS_FLOAT(v_res);
|
|
}
|
|
}
|
|
y[jy] += temp_r1 * a_ptr[ja];
|
|
y[jy+1] += temp_i1 * a_ptr[ja];
|
|
y[jy] += alpha_r * temp_r2 - alpha_i * temp_i2;
|
|
y[jy+1] += alpha_r * temp_i2 + alpha_i * temp_r2;
|
|
jx += inc_x2;
|
|
jy += inc_y2;
|
|
ja += 2;
|
|
a_ptr += lda2;
|
|
}
|
|
return(0);
|
|
}
|