267 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
| /***************************************************************************
 | |
| Copyright (c) 2019, The OpenBLAS Project
 | |
| All rights reserved.
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions are
 | |
| met:
 | |
| 1. Redistributions of source code must retain the above copyright
 | |
| notice, this list of conditions and the following disclaimer.
 | |
| 2. Redistributions in binary form must reproduce the above copyright
 | |
| notice, this list of conditions and the following disclaimer in
 | |
| the documentation and/or other materials provided with the
 | |
| distribution.
 | |
| 3. Neither the name of the OpenBLAS project nor the names of
 | |
| its contributors may be used to endorse or promote products
 | |
| derived from this software without specific prior written permission.
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
 | |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
| DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
| SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
| OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 | |
| USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| *****************************************************************************/
 | |
|  
 | |
| 
 | |
| #include "common.h"
 | |
| #include <math.h>
 | |
| #include <altivec.h>
 | |
| #if defined(DOUBLE)
 | |
|     #define ABS fabs
 | |
| #else
 | |
|     #define ABS fabsf
 | |
| #endif
 | |
| #define CABS1(x,i)    ABS(x[i])+ABS(x[i+1])
 | |
| 
 | |
| 
 | |
| 
 | |
|  
 | |
| /**
 | |
|  * Find  minimum index 
 | |
|  * Warning: requirements n>0  and n % 32 == 0
 | |
|  * @param n     
 | |
|  * @param x     pointer to the vector
 | |
|  * @param minf  (out) minimum absolute value .( only for output )
 | |
|  * @return  index 
 | |
|  */
 | |
| static BLASLONG   ciamin_kernel_32(BLASLONG n, FLOAT *x, FLOAT *minf) { 
 | |
| 
 | |
|     BLASLONG index;
 | |
|     BLASLONG i=0;
 | |
|     register __vector unsigned int static_index0 = {0,1,2,3};
 | |
|     register __vector unsigned int temp0 = {4,4,4, 4}; //temporary vector register
 | |
|     register __vector unsigned int temp1=  temp0<<1;  //{8,8,8,8}
 | |
|     register __vector unsigned int static_index1=static_index0 +temp0;//{4,5,6,7};
 | |
|     register __vector unsigned int static_index2=static_index0 +temp1;//{8,9,10,11};
 | |
|     register __vector unsigned int static_index3=static_index1 +temp1; //{12,13,14,15};
 | |
|     temp0=vec_xor(temp0,temp0);
 | |
|     temp1=temp1 <<1 ; //{16,16,16,16}
 | |
|     register __vector unsigned int temp_add=temp1 <<1; //{32,32,32,32}
 | |
|     register __vector unsigned int quadruple_indices=temp0;//{0,0,0,0}
 | |
|     float first_min=CABS1(x,0);
 | |
|     register __vector float quadruple_values={first_min,first_min,first_min,first_min};
 | |
| 
 | |
|     register __vector float * v_ptrx=(__vector float *)x;
 | |
|     register __vector unsigned char real_pack_mask = { 0,1,2,3,8,9,10,11,16,17,18,19, 24,25,26,27}; 
 | |
|     register __vector unsigned char image_pack_mask=  {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}; 
 | |
|     for(; i<n; i+=32){
 | |
|        //absolute temporary complex vectors
 | |
|        register __vector float v0=vec_abs(v_ptrx[0]);
 | |
|        register __vector float v1=vec_abs(v_ptrx[1]);
 | |
|        register __vector float v2=vec_abs(v_ptrx[2]);
 | |
|        register __vector float v3=vec_abs(v_ptrx[3]);
 | |
|        register __vector float v4=vec_abs(v_ptrx[4]);
 | |
|        register __vector float v5=vec_abs(v_ptrx[5]);
 | |
|        register __vector float v6=vec_abs(v_ptrx[6]);       
 | |
|        register __vector float v7=vec_abs(v_ptrx[7]);
 | |
| 
 | |
|        //pack complex real and imaginary parts together to sum real+image
 | |
|        register __vector float t1=vec_perm(v0,v1,real_pack_mask);
 | |
|        register __vector float ti=vec_perm(v0,v1,image_pack_mask);      
 | |
|        v0=t1+ti; //sum quadruple real with quadruple image
 | |
|        register __vector float t2=vec_perm(v2,v3,real_pack_mask);
 | |
|        register __vector float ti2=vec_perm(v2,v3,image_pack_mask); 
 | |
|        v1=t2+ti2;
 | |
|        t1=vec_perm(v4,v5,real_pack_mask);
 | |
|        ti=vec_perm(v4,v5,image_pack_mask);      
 | |
|        v2=t1+ti; //sum
 | |
|        t2=vec_perm(v6,v7,real_pack_mask);
 | |
|        ti2=vec_perm(v6,v7,image_pack_mask); 
 | |
|        v3=t2+ti2;
 | |
|        // now we have 16 summed elements . lets compare them
 | |
|        v_ptrx+=8;
 | |
|        register __vector bool int r1=vec_cmpgt(v0,v1);
 | |
|        register __vector bool int r2=vec_cmpgt(v2,v3);
 | |
|        register __vector unsigned int ind2= vec_sel(static_index0,static_index1,r1);
 | |
|        v0=vec_sel(v0,v1,r1); 
 | |
|        register __vector unsigned int ind3= vec_sel(static_index2,static_index3,r2);
 | |
|        v1=vec_sel(v2,v3,r2);
 | |
|        //final cmp and select index and value for first 16 values
 | |
|        r1=vec_cmpgt(v0,v1);
 | |
|        register __vector unsigned int indf0 = vec_sel(ind2,ind3,r1);
 | |
|        register __vector float vf0= vec_sel(v0,v1,r1); 
 | |
| 
 | |
|        //absolute temporary complex vectors
 | |
|        v0=vec_abs(v_ptrx[0]);
 | |
|        v1=vec_abs(v_ptrx[1]);
 | |
|        v2=vec_abs(v_ptrx[2]);
 | |
|        v3=vec_abs(v_ptrx[3]);
 | |
|        v4=vec_abs(v_ptrx[4]);
 | |
|        v5=vec_abs(v_ptrx[5]);
 | |
|        v6=vec_abs(v_ptrx[6]);       
 | |
|        v7=vec_abs(v_ptrx[7]);
 | |
| 
 | |
|        //pack complex real and imaginary parts together to sum real+image
 | |
|        t1=vec_perm(v0,v1,real_pack_mask);
 | |
|        ti=vec_perm(v0,v1,image_pack_mask);      
 | |
|        v0=t1+ti; //sum quadruple real with quadruple image
 | |
|        t2=vec_perm(v2,v3,real_pack_mask);
 | |
|        ti2=vec_perm(v2,v3,image_pack_mask); 
 | |
|        v1=t2+ti2;
 | |
|        t1=vec_perm(v4,v5,real_pack_mask);
 | |
|        ti=vec_perm(v4,v5,image_pack_mask);      
 | |
|        v2=t1+ti; //sum
 | |
|        t2=vec_perm(v6,v7,real_pack_mask);
 | |
|        ti2=vec_perm(v6,v7,image_pack_mask); 
 | |
|        v3=t2+ti2;
 | |
|        // now we have 16 summed elements {from 16 to 31} . lets compare them
 | |
|        v_ptrx+=8;
 | |
|        r1=vec_cmpgt(v0,v1);
 | |
|        r2=vec_cmpgt(v2,v3);
 | |
|        ind2= vec_sel(static_index0,static_index1,r1);
 | |
|        v0=vec_sel(v0,v1,r1); 
 | |
|        ind3= vec_sel(static_index2,static_index3,r2);
 | |
|        v1=vec_sel(v2,v3,r2);
 | |
|        //final cmp and select index and value for the second 16 values
 | |
|        r1=vec_cmpgt(v0,v1);
 | |
|        register __vector unsigned int indv0 = vec_sel(ind2,ind3,r1);
 | |
|        register __vector float vv0= vec_sel(v0,v1,r1); 
 | |
|        indv0+=temp1; //make index from 16->31
 | |
| 
 | |
|        //find final quadruple from 32 elements
 | |
|        r2=vec_cmpgt(vf0,vv0);
 | |
|        ind2 = vec_sel( indf0,indv0,r2);
 | |
|        vv0= vec_sel(vf0,vv0,r2);       
 | |
|        //get asbolute index
 | |
|        ind2+=temp0;
 | |
|        //compare with old quadruple and update 
 | |
|        r1=vec_cmpgt(quadruple_values,vv0);
 | |
|        quadruple_indices = vec_sel( quadruple_indices,ind2,r1);
 | |
|        quadruple_values= vec_sel(quadruple_values,vv0,r1);      
 | |
| 
 | |
|        temp0+=temp_add;     
 | |
|     }
 | |
| 
 | |
|  //now we have to chose from 4 values and 4 different indices
 | |
|     // we will compare pairwise if pairs are exactly the same we will choose minimum between index
 | |
|     // otherwise we will assign index of the minimum value
 | |
|     float a1,a2,a3,a4;
 | |
|     unsigned int i1,i2,i3,i4;
 | |
|     a1=vec_extract(quadruple_values,0);
 | |
|     a2=vec_extract(quadruple_values,1);
 | |
|     a3=vec_extract(quadruple_values,2);
 | |
|     a4=vec_extract(quadruple_values,3);
 | |
|     i1=vec_extract(quadruple_indices,0);
 | |
|     i2=vec_extract(quadruple_indices,1);
 | |
|     i3=vec_extract(quadruple_indices,2);
 | |
|     i4=vec_extract(quadruple_indices,3);
 | |
|     if(a1==a2){
 | |
|        index=i1>i2?i2:i1;
 | |
|     }else if(a2<a1){
 | |
|       index=i2;
 | |
|       a1=a2;
 | |
|     }else{
 | |
|        index= i1;
 | |
|     }
 | |
| 
 | |
|     if(a4==a3){
 | |
|       i1=i3>i4?i4:i3;
 | |
|     }else if(a4<a3){
 | |
|       i1=i4;
 | |
|       a3=a4;
 | |
|     }else{
 | |
|        i1= i3;
 | |
|     }
 | |
| 
 | |
|     if(a1==a3){
 | |
|       index=i1>index?index:i1;
 | |
|        *minf=a1; 
 | |
|     }else if(a3<a1){
 | |
|        index=i1;
 | |
|        *minf=a3;
 | |
|     }else{ 
 | |
|         *minf=a1;
 | |
|     }
 | |
|     return index;
 | |
| 
 | |
| }
 | |
|  
 | |
|   
 | |
| 
 | |
|  
 | |
| 
 | |
|  
 | |
|  
 | |
| 
 | |
| BLASLONG CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x)
 | |
| {
 | |
|     BLASLONG i=0;
 | |
|     BLASLONG ix=0;
 | |
|     FLOAT minf;
 | |
|     BLASLONG min=0;
 | |
|     BLASLONG inc_x2;
 | |
| 
 | |
|     if (n <= 0 || inc_x <= 0) return(min);
 | |
|     
 | |
| 
 | |
|     if (inc_x == 1) {
 | |
|         minf = CABS1(x,0); //index will not be incremented
 | |
|         BLASLONG n1 = n & -32;
 | |
|         if (n1 > 0) {
 | |
| 
 | |
|             min = ciamin_kernel_32(n1, x, &minf);
 | |
|             i = n1;
 | |
|             ix = n1 << 1;
 | |
|         }
 | |
|       
 | |
| 
 | |
|         while(i < n)
 | |
|         {
 | |
|             if( CABS1(x,ix) < minf )
 | |
|             {
 | |
|                 min = i;
 | |
|                 minf = CABS1(x,ix);
 | |
|             }
 | |
|             ix += 2;
 | |
|             i++;
 | |
|         }
 | |
|         return (min + 1);
 | |
| 
 | |
|     } else {
 | |
|  
 | |
|         inc_x2 = 2 * inc_x;
 | |
| 
 | |
|         minf = CABS1(x,0);
 | |
|         ix += inc_x2;
 | |
|         i++;
 | |
| 
 | |
|         while(i < n)
 | |
|         {
 | |
|             if( CABS1(x,ix) < minf )
 | |
|             {
 | |
|                 min = i;
 | |
|                 minf = CABS1(x,ix);
 | |
|             }
 | |
|             ix += inc_x2;
 | |
|             i++;
 | |
|         }
 | |
|         return (min + 1);
 | |
|     }
 | |
|  
 | |
| }
 | |
| 
 | |
| 
 |