634 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			634 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGELSD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND,
 | |
| *                          RANK, WORK, LWORK, IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | |
| *       REAL               RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGELSD computes the minimum-norm solution to a real linear least
 | |
| *> squares problem:
 | |
| *>     minimize 2-norm(| b - A*x |)
 | |
| *> using the singular value decomposition (SVD) of A. A is an M-by-N
 | |
| *> matrix which may be rank-deficient.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | |
| *> matrix X.
 | |
| *>
 | |
| *> The problem is solved in three steps:
 | |
| *> (1) Reduce the coefficient matrix A to bidiagonal form with
 | |
| *>     Householder transformations, reducing the original problem
 | |
| *>     into a "bidiagonal least squares problem" (BLS)
 | |
| *> (2) Solve the BLS using a divide and conquer approach.
 | |
| *> (3) Apply back all the Householder tranformations to solve
 | |
| *>     the original least squares problem.
 | |
| *>
 | |
| *> The effective rank of A is determined by treating as zero those
 | |
| *> singular values which are less than RCOND times the largest singular
 | |
| *> value.
 | |
| *>
 | |
| *> The divide and conquer algorithm makes very mild assumptions about
 | |
| *> floating point arithmetic. It will work on machines with a guard
 | |
| *> digit in add/subtract, or on those binary machines without guard
 | |
| *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | |
| *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | |
| *> without guard digits, but we know of none.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices B and X. NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, A has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the M-by-NRHS right hand side matrix B.
 | |
| *>          On exit, B is overwritten by the N-by-NRHS solution
 | |
| *>          matrix X.  If m >= n and RANK = n, the residual
 | |
| *>          sum-of-squares for the solution in the i-th column is given
 | |
| *>          by the sum of squares of elements n+1:m in that column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (min(M,N))
 | |
| *>          The singular values of A in decreasing order.
 | |
| *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          RCOND is used to determine the effective rank of A.
 | |
| *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
 | |
| *>          If RCOND < 0, machine precision is used instead.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>          The effective rank of A, i.e., the number of singular values
 | |
| *>          which are greater than RCOND*S(1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK must be at least 1.
 | |
| *>          The exact minimum amount of workspace needed depends on M,
 | |
| *>          N and NRHS. As long as LWORK is at least
 | |
| *>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
 | |
| *>          if M is greater than or equal to N or
 | |
| *>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
 | |
| *>          if M is less than N, the code will execute correctly.
 | |
| *>          SMLSIZ is returned by ILAENV and is equal to the maximum
 | |
| *>          size of the subproblems at the bottom of the computation
 | |
| *>          tree (usually about 25), and
 | |
| *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
 | |
| *>          For good performance, LWORK should generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the array WORK and the
 | |
| *>          minimum size of the array IWORK, and returns these values as
 | |
| *>          the first entries of the WORK and IWORK arrays, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
 | |
| *>          where MINMN = MIN( M,N ).
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  the algorithm for computing the SVD failed to converge;
 | |
| *>                if INFO = i, i off-diagonal elements of an intermediate
 | |
| *>                bidiagonal form did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realGEsolve
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND,
 | |
|      $                   RANK, WORK, LWORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | |
|       REAL               RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
 | |
|      $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
 | |
|      $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
 | |
|       REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEBRD, SGELQF, SGEQRF, SLABAD, SLACPY, SLALSD,
 | |
|      $                   SLASCL, SLASET, SORMBR, SORMLQ, SORMQR, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE, ILAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, LOG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       MINMN = MIN( M, N )
 | |
|       MAXMN = MAX( M, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace.
 | |
| *     (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *     minimal amount of workspace needed at that point in the code,
 | |
| *     as well as the preferred amount for good performance.
 | |
| *     NB refers to the optimal block size for the immediately
 | |
| *     following subroutine, as returned by ILAENV.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          MINWRK = 1
 | |
|          MAXWRK = 1
 | |
|          LIWORK = 1
 | |
|          IF( MINMN.GT.0 ) THEN
 | |
|             SMLSIZ = ILAENV( 9, 'SGELSD', ' ', 0, 0, 0, 0 )
 | |
|             MNTHR = ILAENV( 6, 'SGELSD', ' ', M, N, NRHS, -1 )
 | |
|             NLVL = MAX( INT( LOG( REAL( MINMN ) / REAL( SMLSIZ + 1 ) ) /
 | |
|      $                  LOG( TWO ) ) + 1, 0 )
 | |
|             LIWORK = 3*MINMN*NLVL + 11*MINMN
 | |
|             MM = M
 | |
|             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
 | |
| *
 | |
| *              Path 1a - overdetermined, with many more rows than
 | |
| *                        columns.
 | |
| *
 | |
|                MM = N
 | |
|                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'SGEQRF', ' ', M,
 | |
|      $                       N, -1, -1 ) )
 | |
|                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'SORMQR', 'LT',
 | |
|      $                       M, NRHS, N, -1 ) )
 | |
|             END IF
 | |
|             IF( M.GE.N ) THEN
 | |
| *
 | |
| *              Path 1 - overdetermined or exactly determined.
 | |
| *
 | |
|                MAXWRK = MAX( MAXWRK, 3*N + ( MM + N )*ILAENV( 1,
 | |
|      $                       'SGEBRD', ' ', MM, N, -1, -1 ) )
 | |
|                MAXWRK = MAX( MAXWRK, 3*N + NRHS*ILAENV( 1, 'SORMBR',
 | |
|      $                       'QLT', MM, NRHS, N, -1 ) )
 | |
|                MAXWRK = MAX( MAXWRK, 3*N + ( N - 1 )*ILAENV( 1,
 | |
|      $                       'SORMBR', 'PLN', N, NRHS, N, -1 ) )
 | |
|                WLALSD = 9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS +
 | |
|      $                  ( SMLSIZ + 1 )**2
 | |
|                MAXWRK = MAX( MAXWRK, 3*N + WLALSD )
 | |
|                MINWRK = MAX( 3*N + MM, 3*N + NRHS, 3*N + WLALSD )
 | |
|             END IF
 | |
|             IF( N.GT.M ) THEN
 | |
|                WLALSD = 9*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS +
 | |
|      $                  ( SMLSIZ + 1 )**2
 | |
|                IF( N.GE.MNTHR ) THEN
 | |
| *
 | |
| *                 Path 2a - underdetermined, with many more columns
 | |
| *                           than rows.
 | |
| *
 | |
|                   MAXWRK = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1,
 | |
|      $                                  -1 )
 | |
|                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
 | |
|      $                          'SGEBRD', ' ', M, M, -1, -1 ) )
 | |
|                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
 | |
|      $                          'SORMBR', 'QLT', M, NRHS, M, -1 ) )
 | |
|                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
 | |
|      $                          'SORMBR', 'PLN', M, NRHS, M, -1 ) )
 | |
|                   IF( NRHS.GT.1 ) THEN
 | |
|                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
 | |
|                   ELSE
 | |
|                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
 | |
|                   END IF
 | |
|                   MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1, 'SORMLQ',
 | |
|      $                          'LT', N, NRHS, M, -1 ) )
 | |
|                   MAXWRK = MAX( MAXWRK, M*M + 4*M + WLALSD )
 | |
| !     XXX: Ensure the Path 2a case below is triggered.  The workspace
 | |
| !     calculation should use queries for all routines eventually.
 | |
|                   MAXWRK = MAX( MAXWRK,
 | |
|      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
 | |
|                ELSE
 | |
| *
 | |
| *                 Path 2 - remaining underdetermined cases.
 | |
| *
 | |
|                   MAXWRK = 3*M + ( N + M )*ILAENV( 1, 'SGEBRD', ' ', M,
 | |
|      $                     N, -1, -1 )
 | |
|                   MAXWRK = MAX( MAXWRK, 3*M + NRHS*ILAENV( 1, 'SORMBR',
 | |
|      $                          'QLT', M, NRHS, N, -1 ) )
 | |
|                   MAXWRK = MAX( MAXWRK, 3*M + M*ILAENV( 1, 'SORMBR',
 | |
|      $                          'PLN', N, NRHS, M, -1 ) )
 | |
|                   MAXWRK = MAX( MAXWRK, 3*M + WLALSD )
 | |
|                END IF
 | |
|                MINWRK = MAX( 3*M + NRHS, 3*M + M, 3*M + WLALSD )
 | |
|             END IF
 | |
|          END IF
 | |
|          MINWRK = MIN( MINWRK, MAXWRK )
 | |
|          WORK( 1 ) = MAXWRK
 | |
|          IWORK( 1 ) = LIWORK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGELSD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          RANK = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters.
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SFMIN = SLAMCH( 'S' )
 | |
|       SMLNUM = SFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A if max entry outside range [SMLNUM,BIGNUM].
 | |
| *
 | |
|       ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM.
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM.
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
 | |
|          RANK = 0
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Scale B if max entry outside range [SMLNUM,BIGNUM].
 | |
| *
 | |
|       BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM.
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM.
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
| *     If M < N make sure certain entries of B are zero.
 | |
| *
 | |
|       IF( M.LT.N )
 | |
|      $   CALL SLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
 | |
| *
 | |
| *     Overdetermined case.
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        Path 1 - overdetermined or exactly determined.
 | |
| *
 | |
|          MM = M
 | |
|          IF( M.GE.MNTHR ) THEN
 | |
| *
 | |
| *           Path 1a - overdetermined, with many more rows than columns.
 | |
| *
 | |
|             MM = N
 | |
|             ITAU = 1
 | |
|             NWORK = ITAU + N
 | |
| *
 | |
| *           Compute A=Q*R.
 | |
| *           (Workspace: need 2*N, prefer N+N*NB)
 | |
| *
 | |
|             CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                   LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *           Multiply B by transpose(Q).
 | |
| *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
 | |
| *
 | |
|             CALL SORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
 | |
|      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *           Zero out below R.
 | |
| *
 | |
|             IF( N.GT.1 ) THEN
 | |
|                CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          IE = 1
 | |
|          ITAUQ = IE + N
 | |
|          ITAUP = ITAUQ + N
 | |
|          NWORK = ITAUP + N
 | |
| *
 | |
| *        Bidiagonalize R in A.
 | |
| *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
 | |
| *
 | |
|          CALL SGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                INFO )
 | |
| *
 | |
| *        Multiply B by transpose of left bidiagonalizing vectors of R.
 | |
| *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
 | |
| *
 | |
|          CALL SORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *        Solve the bidiagonal least squares problem.
 | |
| *
 | |
|          CALL SLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
 | |
|      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *
 | |
| *        Multiply B by right bidiagonalizing vectors of R.
 | |
| *
 | |
|          CALL SORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
 | |
|      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | |
| *
 | |
|       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
 | |
|      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
 | |
| *
 | |
| *        Path 2a - underdetermined, with many more columns than rows
 | |
| *        and sufficient workspace for an efficient algorithm.
 | |
| *
 | |
|          LDWORK = M
 | |
|          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
 | |
|      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
 | |
|          ITAU = 1
 | |
|          NWORK = M + 1
 | |
| *
 | |
| *        Compute A=L*Q.
 | |
| *        (Workspace: need 2*M, prefer M+M*NB)
 | |
| *
 | |
|          CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                LWORK-NWORK+1, INFO )
 | |
|          IL = NWORK
 | |
| *
 | |
| *        Copy L to WORK(IL), zeroing out above its diagonal.
 | |
| *
 | |
|          CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
 | |
|          CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
 | |
|      $                LDWORK )
 | |
|          IE = IL + LDWORK*M
 | |
|          ITAUQ = IE + M
 | |
|          ITAUP = ITAUQ + M
 | |
|          NWORK = ITAUP + M
 | |
| *
 | |
| *        Bidiagonalize L in WORK(IL).
 | |
| *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
 | |
| *
 | |
|          CALL SGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
 | |
|      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
 | |
|      $                LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *        Multiply B by transpose of left bidiagonalizing vectors of L.
 | |
| *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
 | |
| *
 | |
|          CALL SORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
 | |
|      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
 | |
|      $                LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *        Solve the bidiagonal least squares problem.
 | |
| *
 | |
|          CALL SLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
 | |
|      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *
 | |
| *        Multiply B by right bidiagonalizing vectors of L.
 | |
| *
 | |
|          CALL SORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
 | |
|      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
 | |
|      $                LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *        Zero out below first M rows of B.
 | |
| *
 | |
|          CALL SLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
 | |
|          NWORK = ITAU + M
 | |
| *
 | |
| *        Multiply transpose(Q) by B.
 | |
| *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
 | |
| *
 | |
|          CALL SORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
 | |
|      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Path 2 - remaining underdetermined cases.
 | |
| *
 | |
|          IE = 1
 | |
|          ITAUQ = IE + M
 | |
|          ITAUP = ITAUQ + M
 | |
|          NWORK = ITAUP + M
 | |
| *
 | |
| *        Bidiagonalize A.
 | |
| *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
 | |
| *
 | |
|          CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                INFO )
 | |
| *
 | |
| *        Multiply B by transpose of left bidiagonalizing vectors.
 | |
| *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
 | |
| *
 | |
|          CALL SORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | |
| *
 | |
| *        Solve the bidiagonal least squares problem.
 | |
| *
 | |
|          CALL SLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
 | |
|      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *
 | |
| *        Multiply B by right bidiagonalizing vectors of A.
 | |
| *
 | |
|          CALL SORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
 | |
|      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling.
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       END IF
 | |
| *
 | |
|    10 CONTINUE
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       IWORK( 1 ) = LIWORK
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGELSD
 | |
| *
 | |
|       END
 |