359 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			359 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAQPS + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqps.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqps.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqps.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
 | |
| *                          VN2, AUXV, F, LDF )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
 | |
| *      $                   VN1( * ), VN2( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAQPS computes a step of QR factorization with column pivoting
 | |
| *> of a real M-by-N matrix A by using Blas-3.  It tries to factorize
 | |
| *> NB columns from A starting from the row OFFSET+1, and updates all
 | |
| *> of the matrix with Blas-3 xGEMM.
 | |
| *>
 | |
| *> In some cases, due to catastrophic cancellations, it cannot
 | |
| *> factorize NB columns.  Hence, the actual number of factorized
 | |
| *> columns is returned in KB.
 | |
| *>
 | |
| *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. N >= 0
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] OFFSET
 | |
| *> \verbatim
 | |
| *>          OFFSET is INTEGER
 | |
| *>          The number of rows of A that have been factorized in
 | |
| *>          previous steps.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The number of columns to factorize.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] KB
 | |
| *> \verbatim
 | |
| *>          KB is INTEGER
 | |
| *>          The number of columns actually factorized.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
 | |
| *>          factor obtained and block A(1:OFFSET,1:N) has been
 | |
| *>          accordingly pivoted, but no factorized.
 | |
| *>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
 | |
| *>          been updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          JPVT(I) = K <==> Column K of the full matrix A has been
 | |
| *>          permuted into position I in AP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (KB)
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VN1
 | |
| *> \verbatim
 | |
| *>          VN1 is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The vector with the partial column norms.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VN2
 | |
| *> \verbatim
 | |
| *>          VN2 is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The vector with the exact column norms.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AUXV
 | |
| *> \verbatim
 | |
| *>          AUXV is DOUBLE PRECISION array, dimension (NB)
 | |
| *>          Auxiliar vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] F
 | |
| *> \verbatim
 | |
| *>          F is DOUBLE PRECISION array, dimension (LDF,NB)
 | |
| *>          Matrix F**T = L*Y**T*A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDF
 | |
| *> \verbatim
 | |
| *>          LDF is INTEGER
 | |
| *>          The leading dimension of the array F. LDF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
 | |
| *>    X. Sun, Computer Science Dept., Duke University, USA
 | |
| *> \n
 | |
| *>  Partial column norm updating strategy modified on April 2011
 | |
| *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 | |
| *>    University of Zagreb, Croatia.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> LAPACK Working Note 176
 | |
| *
 | |
| *> \htmlonly
 | |
| *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
 | |
|      $                   VN2, AUXV, F, LDF )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
 | |
|      $                   VN1( * ), VN2( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
 | |
|       DOUBLE PRECISION   AKK, TEMP, TEMP2, TOL3Z
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM, DGEMV, DLARFG, DSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, NINT, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DNRM2
 | |
|       EXTERNAL           IDAMAX, DLAMCH, DNRM2
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       LASTRK = MIN( M, N+OFFSET )
 | |
|       LSTICC = 0
 | |
|       K = 0
 | |
|       TOL3Z = SQRT(DLAMCH('Epsilon'))
 | |
| *
 | |
| *     Beginning of while loop.
 | |
| *
 | |
|    10 CONTINUE
 | |
|       IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
 | |
|          K = K + 1
 | |
|          RK = OFFSET + K
 | |
| *
 | |
| *        Determine ith pivot column and swap if necessary
 | |
| *
 | |
|          PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
 | |
|          IF( PVT.NE.K ) THEN
 | |
|             CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
 | |
|             CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
 | |
|             ITEMP = JPVT( PVT )
 | |
|             JPVT( PVT ) = JPVT( K )
 | |
|             JPVT( K ) = ITEMP
 | |
|             VN1( PVT ) = VN1( K )
 | |
|             VN2( PVT ) = VN2( K )
 | |
|          END IF
 | |
| *
 | |
| *        Apply previous Householder reflectors to column K:
 | |
| *        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T.
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
 | |
|      $                  LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Generate elementary reflector H(k).
 | |
| *
 | |
|          IF( RK.LT.M ) THEN
 | |
|             CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
 | |
|          ELSE
 | |
|             CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
 | |
|          END IF
 | |
| *
 | |
|          AKK = A( RK, K )
 | |
|          A( RK, K ) = ONE
 | |
| *
 | |
| *        Compute Kth column of F:
 | |
| *
 | |
| *        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K).
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
 | |
|      $                  A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
 | |
|      $                  F( K+1, K ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Padding F(1:K,K) with zeros.
 | |
| *
 | |
|          DO 20 J = 1, K
 | |
|             F( J, K ) = ZERO
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Incremental updating of F:
 | |
| *        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T
 | |
| *                    *A(RK:M,K).
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
 | |
|      $                  LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
 | |
| *
 | |
|             CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
 | |
|      $                  AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Update the current row of A:
 | |
| *        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T.
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
 | |
|      $                  A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
 | |
|          END IF
 | |
| *
 | |
| *        Update partial column norms.
 | |
| *
 | |
|          IF( RK.LT.LASTRK ) THEN
 | |
|             DO 30 J = K + 1, N
 | |
|                IF( VN1( J ).NE.ZERO ) THEN
 | |
| *
 | |
| *                 NOTE: The following 4 lines follow from the analysis in
 | |
| *                 Lapack Working Note 176.
 | |
| *
 | |
|                   TEMP = ABS( A( RK, J ) ) / VN1( J )
 | |
|                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
 | |
|                   TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
 | |
|                   IF( TEMP2 .LE. TOL3Z ) THEN
 | |
|                      VN2( J ) = DBLE( LSTICC )
 | |
|                      LSTICC = J
 | |
|                   ELSE
 | |
|                      VN1( J ) = VN1( J )*SQRT( TEMP )
 | |
|                   END IF
 | |
|                END IF
 | |
|    30       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          A( RK, K ) = AKK
 | |
| *
 | |
| *        End of while loop.
 | |
| *
 | |
|          GO TO 10
 | |
|       END IF
 | |
|       KB = K
 | |
|       RK = OFFSET + KB
 | |
| *
 | |
| *     Apply the block reflector to the rest of the matrix:
 | |
| *     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
 | |
| *                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T.
 | |
| *
 | |
|       IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
 | |
|          CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
 | |
|      $               A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
 | |
|      $               A( RK+1, KB+1 ), LDA )
 | |
|       END IF
 | |
| *
 | |
| *     Recomputation of difficult columns.
 | |
| *
 | |
|    40 CONTINUE
 | |
|       IF( LSTICC.GT.0 ) THEN
 | |
|          ITEMP = NINT( VN2( LSTICC ) )
 | |
|          VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
 | |
| *
 | |
| *        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
 | |
| *        SNRM2 does not fail on vectors with norm below the value of
 | |
| *        SQRT(DLAMCH('S')) 
 | |
| *
 | |
|          VN2( LSTICC ) = VN1( LSTICC )
 | |
|          LSTICC = ITEMP
 | |
|          GO TO 40
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAQPS
 | |
| *
 | |
|       END
 |