578 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAQR3 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr3.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr3.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr3.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
 | |
| *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
 | |
| *                          NV, WV, LDWV, WORK, LWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
 | |
| *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
 | |
| *       LOGICAL            WANTT, WANTZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
 | |
| *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    Aggressive early deflation:
 | |
| *>
 | |
| *>    CLAQR3 accepts as input an upper Hessenberg matrix
 | |
| *>    H and performs an unitary similarity transformation
 | |
| *>    designed to detect and deflate fully converged eigenvalues from
 | |
| *>    a trailing principal submatrix.  On output H has been over-
 | |
| *>    written by a new Hessenberg matrix that is a perturbation of
 | |
| *>    an unitary similarity transformation of H.  It is to be
 | |
| *>    hoped that the final version of H has many zero subdiagonal
 | |
| *>    entries.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTT
 | |
| *> \verbatim
 | |
| *>          WANTT is LOGICAL
 | |
| *>          If .TRUE., then the Hessenberg matrix H is fully updated
 | |
| *>          so that the triangular Schur factor may be
 | |
| *>          computed (in cooperation with the calling subroutine).
 | |
| *>          If .FALSE., then only enough of H is updated to preserve
 | |
| *>          the eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          If .TRUE., then the unitary matrix Z is updated so
 | |
| *>          so that the unitary Schur factor may be computed
 | |
| *>          (in cooperation with the calling subroutine).
 | |
| *>          If .FALSE., then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix H and (if WANTZ is .TRUE.) the
 | |
| *>          order of the unitary matrix Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KTOP
 | |
| *> \verbatim
 | |
| *>          KTOP is INTEGER
 | |
| *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
 | |
| *>          KBOT and KTOP together determine an isolated block
 | |
| *>          along the diagonal of the Hessenberg matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KBOT
 | |
| *> \verbatim
 | |
| *>          KBOT is INTEGER
 | |
| *>          It is assumed without a check that either
 | |
| *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
 | |
| *>          determine an isolated block along the diagonal of the
 | |
| *>          Hessenberg matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NW
 | |
| *> \verbatim
 | |
| *>          NW is INTEGER
 | |
| *>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is COMPLEX array, dimension (LDH,N)
 | |
| *>          On input the initial N-by-N section of H stores the
 | |
| *>          Hessenberg matrix undergoing aggressive early deflation.
 | |
| *>          On output H has been transformed by a unitary
 | |
| *>          similarity transformation, perturbed, and the returned
 | |
| *>          to Hessenberg form that (it is to be hoped) has some
 | |
| *>          zero subdiagonal entries.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is integer
 | |
| *>          Leading dimension of H just as declared in the calling
 | |
| *>          subroutine.  N .LE. LDH
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILOZ
 | |
| *> \verbatim
 | |
| *>          ILOZ is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHIZ
 | |
| *> \verbatim
 | |
| *>          IHIZ is INTEGER
 | |
| *>          Specify the rows of Z to which transformations must be
 | |
| *>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ,N)
 | |
| *>          IF WANTZ is .TRUE., then on output, the unitary
 | |
| *>          similarity transformation mentioned above has been
 | |
| *>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
 | |
| *>          If WANTZ is .FALSE., then Z is unreferenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is integer
 | |
| *>          The leading dimension of Z just as declared in the
 | |
| *>          calling subroutine.  1 .LE. LDZ.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NS
 | |
| *> \verbatim
 | |
| *>          NS is integer
 | |
| *>          The number of unconverged (ie approximate) eigenvalues
 | |
| *>          returned in SR and SI that may be used as shifts by the
 | |
| *>          calling subroutine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ND
 | |
| *> \verbatim
 | |
| *>          ND is integer
 | |
| *>          The number of converged eigenvalues uncovered by this
 | |
| *>          subroutine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SH
 | |
| *> \verbatim
 | |
| *>          SH is COMPLEX array, dimension KBOT
 | |
| *>          On output, approximate eigenvalues that may
 | |
| *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
 | |
| *>          through SR(KBOT-ND).  Converged eigenvalues are
 | |
| *>          stored in SH(KBOT-ND+1) through SH(KBOT).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDV,NW)
 | |
| *>          An NW-by-NW work array.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is integer scalar
 | |
| *>          The leading dimension of V just as declared in the
 | |
| *>          calling subroutine.  NW .LE. LDV
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NH
 | |
| *> \verbatim
 | |
| *>          NH is integer scalar
 | |
| *>          The number of columns of T.  NH.GE.NW.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDT,NW)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is integer
 | |
| *>          The leading dimension of T just as declared in the
 | |
| *>          calling subroutine.  NW .LE. LDT
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NV
 | |
| *> \verbatim
 | |
| *>          NV is integer
 | |
| *>          The number of rows of work array WV available for
 | |
| *>          workspace.  NV.GE.NW.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WV
 | |
| *> \verbatim
 | |
| *>          WV is COMPLEX array, dimension (LDWV,NW)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWV
 | |
| *> \verbatim
 | |
| *>          LDWV is integer
 | |
| *>          The leading dimension of W just as declared in the
 | |
| *>          calling subroutine.  NW .LE. LDV
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension LWORK.
 | |
| *>          On exit, WORK(1) is set to an estimate of the optimal value
 | |
| *>          of LWORK for the given values of N, NW, KTOP and KBOT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is integer
 | |
| *>          The dimension of the work array WORK.  LWORK = 2*NW
 | |
| *>          suffices, but greater efficiency may result from larger
 | |
| *>          values of LWORK.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; CLAQR3
 | |
| *>          only estimates the optimal workspace size for the given
 | |
| *>          values of N, NW, KTOP and KBOT.  The estimate is returned
 | |
| *>          in WORK(1).  No error message related to LWORK is issued
 | |
| *>          by XERBLA.  Neither H nor Z are accessed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>       Karen Braman and Ralph Byers, Department of Mathematics,
 | |
| *>       University of Kansas, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
 | |
|      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
 | |
|      $                   NV, WV, LDWV, WORK, LWORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
 | |
|      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
 | |
|       LOGICAL            WANTT, WANTZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
 | |
|      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  ================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ZERO, ONE
 | |
|       PARAMETER          ( ZERO = ( 0.0e0, 0.0e0 ),
 | |
|      $                   ONE = ( 1.0e0, 0.0e0 ) )
 | |
|       REAL               RZERO, RONE
 | |
|       PARAMETER          ( RZERO = 0.0e0, RONE = 1.0e0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX            BETA, CDUM, S, TAU
 | |
|       REAL               FOO, SAFMAX, SAFMIN, SMLNUM, ULP
 | |
|       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
 | |
|      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
 | |
|      $                   LWKOPT, NMIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           SLAMCH, ILAENV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CGEHRD, CGEMM, CLACPY, CLAHQR, CLAQR4,
 | |
|      $                   CLARF, CLARFG, CLASET, CTREXC, CUNMHR, SLABAD
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, INT, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     ==== Estimate optimal workspace. ====
 | |
| *
 | |
|       JW = MIN( NW, KBOT-KTOP+1 )
 | |
|       IF( JW.LE.2 ) THEN
 | |
|          LWKOPT = 1
 | |
|       ELSE
 | |
| *
 | |
| *        ==== Workspace query call to CGEHRD ====
 | |
| *
 | |
|          CALL CGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
 | |
|          LWK1 = INT( WORK( 1 ) )
 | |
| *
 | |
| *        ==== Workspace query call to CUNMHR ====
 | |
| *
 | |
|          CALL CUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
 | |
|      $                WORK, -1, INFO )
 | |
|          LWK2 = INT( WORK( 1 ) )
 | |
| *
 | |
| *        ==== Workspace query call to CLAQR4 ====
 | |
| *
 | |
|          CALL CLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
 | |
|      $                LDV, WORK, -1, INFQR )
 | |
|          LWK3 = INT( WORK( 1 ) )
 | |
| *
 | |
| *        ==== Optimal workspace ====
 | |
| *
 | |
|          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
 | |
|       END IF
 | |
| *
 | |
| *     ==== Quick return in case of workspace query. ====
 | |
| *
 | |
|       IF( LWORK.EQ.-1 ) THEN
 | |
|          WORK( 1 ) = CMPLX( LWKOPT, 0 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     ==== Nothing to do ...
 | |
| *     ... for an empty active block ... ====
 | |
|       NS = 0
 | |
|       ND = 0
 | |
|       WORK( 1 ) = ONE
 | |
|       IF( KTOP.GT.KBOT )
 | |
|      $   RETURN
 | |
| *     ... nor for an empty deflation window. ====
 | |
|       IF( NW.LT.1 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     ==== Machine constants ====
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'SAFE MINIMUM' )
 | |
|       SAFMAX = RONE / SAFMIN
 | |
|       CALL SLABAD( SAFMIN, SAFMAX )
 | |
|       ULP = SLAMCH( 'PRECISION' )
 | |
|       SMLNUM = SAFMIN*( REAL( N ) / ULP )
 | |
| *
 | |
| *     ==== Setup deflation window ====
 | |
| *
 | |
|       JW = MIN( NW, KBOT-KTOP+1 )
 | |
|       KWTOP = KBOT - JW + 1
 | |
|       IF( KWTOP.EQ.KTOP ) THEN
 | |
|          S = ZERO
 | |
|       ELSE
 | |
|          S = H( KWTOP, KWTOP-1 )
 | |
|       END IF
 | |
| *
 | |
|       IF( KBOT.EQ.KWTOP ) THEN
 | |
| *
 | |
| *        ==== 1-by-1 deflation window: not much to do ====
 | |
| *
 | |
|          SH( KWTOP ) = H( KWTOP, KWTOP )
 | |
|          NS = 1
 | |
|          ND = 0
 | |
|          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
 | |
|      $       KWTOP ) ) ) ) THEN
 | |
|             NS = 0
 | |
|             ND = 1
 | |
|             IF( KWTOP.GT.KTOP )
 | |
|      $         H( KWTOP, KWTOP-1 ) = ZERO
 | |
|          END IF
 | |
|          WORK( 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     ==== Convert to spike-triangular form.  (In case of a
 | |
| *     .    rare QR failure, this routine continues to do
 | |
| *     .    aggressive early deflation using that part of
 | |
| *     .    the deflation window that converged using INFQR
 | |
| *     .    here and there to keep track.) ====
 | |
| *
 | |
|       CALL CLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
 | |
|       CALL CCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
 | |
| *
 | |
|       CALL CLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
 | |
|       NMIN = ILAENV( 12, 'CLAQR3', 'SV', JW, 1, JW, LWORK )
 | |
|       IF( JW.GT.NMIN ) THEN
 | |
|          CALL CLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
 | |
|      $                JW, V, LDV, WORK, LWORK, INFQR )
 | |
|       ELSE
 | |
|          CALL CLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
 | |
|      $                JW, V, LDV, INFQR )
 | |
|       END IF
 | |
| *
 | |
| *     ==== Deflation detection loop ====
 | |
| *
 | |
|       NS = JW
 | |
|       ILST = INFQR + 1
 | |
|       DO 10 KNT = INFQR + 1, JW
 | |
| *
 | |
| *        ==== Small spike tip deflation test ====
 | |
| *
 | |
|          FOO = CABS1( T( NS, NS ) )
 | |
|          IF( FOO.EQ.RZERO )
 | |
|      $      FOO = CABS1( S )
 | |
|          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
 | |
|      $        THEN
 | |
| *
 | |
| *           ==== One more converged eigenvalue ====
 | |
| *
 | |
|             NS = NS - 1
 | |
|          ELSE
 | |
| *
 | |
| *           ==== One undeflatable eigenvalue.  Move it up out of the
 | |
| *           .    way.   (CTREXC can not fail in this case.) ====
 | |
| *
 | |
|             IFST = NS
 | |
|             CALL CTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
 | |
|             ILST = ILST + 1
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
| *
 | |
| *        ==== Return to Hessenberg form ====
 | |
| *
 | |
|       IF( NS.EQ.0 )
 | |
|      $   S = ZERO
 | |
| *
 | |
|       IF( NS.LT.JW ) THEN
 | |
| *
 | |
| *        ==== sorting the diagonal of T improves accuracy for
 | |
| *        .    graded matrices.  ====
 | |
| *
 | |
|          DO 30 I = INFQR + 1, NS
 | |
|             IFST = I
 | |
|             DO 20 J = I + 1, NS
 | |
|                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
 | |
|      $            IFST = J
 | |
|    20       CONTINUE
 | |
|             ILST = I
 | |
|             IF( IFST.NE.ILST )
 | |
|      $         CALL CTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     ==== Restore shift/eigenvalue array from T ====
 | |
| *
 | |
|       DO 40 I = INFQR + 1, JW
 | |
|          SH( KWTOP+I-1 ) = T( I, I )
 | |
|    40 CONTINUE
 | |
| *
 | |
| *
 | |
|       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
 | |
|          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
 | |
| *
 | |
| *           ==== Reflect spike back into lower triangle ====
 | |
| *
 | |
|             CALL CCOPY( NS, V, LDV, WORK, 1 )
 | |
|             DO 50 I = 1, NS
 | |
|                WORK( I ) = CONJG( WORK( I ) )
 | |
|    50       CONTINUE
 | |
|             BETA = WORK( 1 )
 | |
|             CALL CLARFG( NS, BETA, WORK( 2 ), 1, TAU )
 | |
|             WORK( 1 ) = ONE
 | |
| *
 | |
|             CALL CLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
 | |
| *
 | |
|             CALL CLARF( 'L', NS, JW, WORK, 1, CONJG( TAU ), T, LDT,
 | |
|      $                  WORK( JW+1 ) )
 | |
|             CALL CLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
 | |
|      $                  WORK( JW+1 ) )
 | |
|             CALL CLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
 | |
|      $                  WORK( JW+1 ) )
 | |
| *
 | |
|             CALL CGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
 | |
|      $                   LWORK-JW, INFO )
 | |
|          END IF
 | |
| *
 | |
| *        ==== Copy updated reduced window into place ====
 | |
| *
 | |
|          IF( KWTOP.GT.1 )
 | |
|      $      H( KWTOP, KWTOP-1 ) = S*CONJG( V( 1, 1 ) )
 | |
|          CALL CLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
 | |
|          CALL CCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
 | |
|      $               LDH+1 )
 | |
| *
 | |
| *        ==== Accumulate orthogonal matrix in order update
 | |
| *        .    H and Z, if requested.  ====
 | |
| *
 | |
|          IF( NS.GT.1 .AND. S.NE.ZERO )
 | |
|      $      CALL CUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
 | |
|      $                   WORK( JW+1 ), LWORK-JW, INFO )
 | |
| *
 | |
| *        ==== Update vertical slab in H ====
 | |
| *
 | |
|          IF( WANTT ) THEN
 | |
|             LTOP = 1
 | |
|          ELSE
 | |
|             LTOP = KTOP
 | |
|          END IF
 | |
|          DO 60 KROW = LTOP, KWTOP - 1, NV
 | |
|             KLN = MIN( NV, KWTOP-KROW )
 | |
|             CALL CGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
 | |
|      $                  LDH, V, LDV, ZERO, WV, LDWV )
 | |
|             CALL CLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        ==== Update horizontal slab in H ====
 | |
| *
 | |
|          IF( WANTT ) THEN
 | |
|             DO 70 KCOL = KBOT + 1, N, NH
 | |
|                KLN = MIN( NH, N-KCOL+1 )
 | |
|                CALL CGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
 | |
|      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
 | |
|                CALL CLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
 | |
|      $                      LDH )
 | |
|    70       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        ==== Update vertical slab in Z ====
 | |
| *
 | |
|          IF( WANTZ ) THEN
 | |
|             DO 80 KROW = ILOZ, IHIZ, NV
 | |
|                KLN = MIN( NV, IHIZ-KROW+1 )
 | |
|                CALL CGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
 | |
|      $                     LDZ, V, LDV, ZERO, WV, LDWV )
 | |
|                CALL CLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
 | |
|      $                      LDZ )
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     ==== Return the number of deflations ... ====
 | |
| *
 | |
|       ND = JW - NS
 | |
| *
 | |
| *     ==== ... and the number of shifts. (Subtracting
 | |
| *     .    INFQR from the spike length takes care
 | |
| *     .    of the case of a rare QR failure while
 | |
| *     .    calculating eigenvalues of the deflation
 | |
| *     .    window.)  ====
 | |
| *
 | |
|       NS = NS - INFQR
 | |
| *
 | |
| *      ==== Return optimal workspace. ====
 | |
| *
 | |
|       WORK( 1 ) = CMPLX( LWKOPT, 0 )
 | |
| *
 | |
| *     ==== End of CLAQR3 ====
 | |
| *
 | |
|       END
 |