707 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			707 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGEGV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegv.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegv.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegv.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
 | 
						|
*                         VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBVL, JOBVR
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | 
						|
*      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine CGGEV.
 | 
						|
*>
 | 
						|
*> CGEGV computes the eigenvalues and, optionally, the left and/or right
 | 
						|
*> eigenvectors of a complex matrix pair (A,B).
 | 
						|
*> Given two square matrices A and B,
 | 
						|
*> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
 | 
						|
*> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
 | 
						|
*> that
 | 
						|
*>    A*x = lambda*B*x.
 | 
						|
*>
 | 
						|
*> An alternate form is to find the eigenvalues mu and corresponding
 | 
						|
*> eigenvectors y such that
 | 
						|
*>    mu*A*y = B*y.
 | 
						|
*>
 | 
						|
*> These two forms are equivalent with mu = 1/lambda and x = y if
 | 
						|
*> neither lambda nor mu is zero.  In order to deal with the case that
 | 
						|
*> lambda or mu is zero or small, two values alpha and beta are returned
 | 
						|
*> for each eigenvalue, such that lambda = alpha/beta and
 | 
						|
*> mu = beta/alpha.
 | 
						|
*> 
 | 
						|
*> The vectors x and y in the above equations are right eigenvectors of
 | 
						|
*> the matrix pair (A,B).  Vectors u and v satisfying
 | 
						|
*>    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
 | 
						|
*> are left eigenvectors of (A,B).
 | 
						|
*>
 | 
						|
*> Note: this routine performs "full balancing" on A and B
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBVL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVL is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the left generalized eigenvectors;
 | 
						|
*>          = 'V':  compute the left generalized eigenvectors (returned
 | 
						|
*>                  in VL).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVR is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the right generalized eigenvectors;
 | 
						|
*>          = 'V':  compute the right generalized eigenvectors (returned
 | 
						|
*>                  in VR).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A, B, VL, and VR.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          On entry, the matrix A.
 | 
						|
*>          If JOBVL = 'V' or JOBVR = 'V', then on exit A
 | 
						|
*>          contains the Schur form of A from the generalized Schur
 | 
						|
*>          factorization of the pair (A,B) after balancing.  If no
 | 
						|
*>          eigenvectors were computed, then only the diagonal elements
 | 
						|
*>          of the Schur form will be correct.  See CGGHRD and CHGEQZ
 | 
						|
*>          for details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB, N)
 | 
						|
*>          On entry, the matrix B.
 | 
						|
*>          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
 | 
						|
*>          upper triangular matrix obtained from B in the generalized
 | 
						|
*>          Schur factorization of the pair (A,B) after balancing.
 | 
						|
*>          If no eigenvectors were computed, then only the diagonal
 | 
						|
*>          elements of B will be correct.  See CGGHRD and CHGEQZ for
 | 
						|
*>          details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX array, dimension (N)
 | 
						|
*>          The complex scalars alpha that define the eigenvalues of
 | 
						|
*>          GNEP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX array, dimension (N)
 | 
						|
*>          The complex scalars beta that define the eigenvalues of GNEP.
 | 
						|
*>          
 | 
						|
*>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
 | 
						|
*>          represent the j-th eigenvalue of the matrix pair (A,B), in
 | 
						|
*>          one of the forms lambda = alpha/beta or mu = beta/alpha.
 | 
						|
*>          Since either lambda or mu may overflow, they should not,
 | 
						|
*>          in general, be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is COMPLEX array, dimension (LDVL,N)
 | 
						|
*>          If JOBVL = 'V', the left eigenvectors u(j) are stored
 | 
						|
*>          in the columns of VL, in the same order as their eigenvalues.
 | 
						|
*>          Each eigenvector is scaled so that its largest component has
 | 
						|
*>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
 | 
						|
*>          corresponding to an eigenvalue with alpha = beta = 0, which
 | 
						|
*>          are set to zero.
 | 
						|
*>          Not referenced if JOBVL = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the matrix VL. LDVL >= 1, and
 | 
						|
*>          if JOBVL = 'V', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is COMPLEX array, dimension (LDVR,N)
 | 
						|
*>          If JOBVR = 'V', the right eigenvectors x(j) are stored
 | 
						|
*>          in the columns of VR, in the same order as their eigenvalues.
 | 
						|
*>          Each eigenvector is scaled so that its largest component has
 | 
						|
*>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
 | 
						|
*>          corresponding to an eigenvalue with alpha = beta = 0, which
 | 
						|
*>          are set to zero.
 | 
						|
*>          Not referenced if JOBVR = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the matrix VR. LDVR >= 1, and
 | 
						|
*>          if JOBVR = 'V', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,2*N).
 | 
						|
*>          For good performance, LWORK must generally be larger.
 | 
						|
*>          To compute the optimal value of LWORK, call ILAENV to get
 | 
						|
*>          blocksizes (for CGEQRF, CUNMQR, and CUNGQR.)  Then compute:
 | 
						|
*>          NB  -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;
 | 
						|
*>          The optimal LWORK is  MAX( 2*N, N*(NB+1) ).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (8*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          =1,...,N:
 | 
						|
*>                The QZ iteration failed.  No eigenvectors have been
 | 
						|
*>                calculated, but ALPHA(j) and BETA(j) should be
 | 
						|
*>                correct for j=INFO+1,...,N.
 | 
						|
*>          > N:  errors that usually indicate LAPACK problems:
 | 
						|
*>                =N+1: error return from CGGBAL
 | 
						|
*>                =N+2: error return from CGEQRF
 | 
						|
*>                =N+3: error return from CUNMQR
 | 
						|
*>                =N+4: error return from CUNGQR
 | 
						|
*>                =N+5: error return from CGGHRD
 | 
						|
*>                =N+6: error return from CHGEQZ (other than failed
 | 
						|
*>                                               iteration)
 | 
						|
*>                =N+7: error return from CTGEVC
 | 
						|
*>                =N+8: error return from CGGBAK (computing VL)
 | 
						|
*>                =N+9: error return from CGGBAK (computing VR)
 | 
						|
*>                =N+10: error return from CLASCL (various calls)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexGEeigen
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Balancing
 | 
						|
*>  ---------
 | 
						|
*>
 | 
						|
*>  This driver calls CGGBAL to both permute and scale rows and columns
 | 
						|
*>  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
 | 
						|
*>  and PL*B*R will be upper triangular except for the diagonal blocks
 | 
						|
*>  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
 | 
						|
*>  possible.  The diagonal scaling matrices DL and DR are chosen so
 | 
						|
*>  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
 | 
						|
*>  one (except for the elements that start out zero.)
 | 
						|
*>
 | 
						|
*>  After the eigenvalues and eigenvectors of the balanced matrices
 | 
						|
*>  have been computed, CGGBAK transforms the eigenvectors back to what
 | 
						|
*>  they would have been (in perfect arithmetic) if they had not been
 | 
						|
*>  balanced.
 | 
						|
*>
 | 
						|
*>  Contents of A and B on Exit
 | 
						|
*>  -------- -- - --- - -- ----
 | 
						|
*>
 | 
						|
*>  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
 | 
						|
*>  both), then on exit the arrays A and B will contain the complex Schur
 | 
						|
*>  form[*] of the "balanced" versions of A and B.  If no eigenvectors
 | 
						|
*>  are computed, then only the diagonal blocks will be correct.
 | 
						|
*>
 | 
						|
*>  [*] In other words, upper triangular form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
 | 
						|
     $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBVL, JOBVR
 | 
						|
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | 
						|
     $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
 | 
						|
     $                   CONE = ( 1.0E0, 0.0E0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
 | 
						|
      CHARACTER          CHTEMP
 | 
						|
      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
 | 
						|
     $                   IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
 | 
						|
     $                   LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
 | 
						|
      REAL               ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
 | 
						|
     $                   BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
 | 
						|
     $                   SALFAR, SBETA, SCALE, TEMP
 | 
						|
      COMPLEX            X
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      LOGICAL            LDUMMA( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY,
 | 
						|
     $                   CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               CLANGE, SLAMCH
 | 
						|
      EXTERNAL           ILAENV, LSAME, CLANGE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, INT, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               ABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode the input arguments
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVL, 'N' ) ) THEN
 | 
						|
         IJOBVL = 1
 | 
						|
         ILVL = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
 | 
						|
         IJOBVL = 2
 | 
						|
         ILVL = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVL = -1
 | 
						|
         ILVL = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVR, 'N' ) ) THEN
 | 
						|
         IJOBVR = 1
 | 
						|
         ILVR = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
 | 
						|
         IJOBVR = 2
 | 
						|
         ILVR = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVR = -1
 | 
						|
         ILVR = .FALSE.
 | 
						|
      END IF
 | 
						|
      ILV = ILVL .OR. ILVR
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      LWKMIN = MAX( 2*N, 1 )
 | 
						|
      LWKOPT = LWKMIN
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      INFO = 0
 | 
						|
      IF( IJOBVL.LE.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( IJOBVR.LE.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -15
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         NB1 = ILAENV( 1, 'CGEQRF', ' ', N, N, -1, -1 )
 | 
						|
         NB2 = ILAENV( 1, 'CUNMQR', ' ', N, N, N, -1 )
 | 
						|
         NB3 = ILAENV( 1, 'CUNGQR', ' ', N, N, N, -1 )
 | 
						|
         NB = MAX( NB1, NB2, NB3 )
 | 
						|
         LOPT = MAX( 2*N, N*(NB+1) )
 | 
						|
         WORK( 1 ) = LOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGEGV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
 | 
						|
      SAFMIN = SLAMCH( 'S' )
 | 
						|
      SAFMIN = SAFMIN + SAFMIN
 | 
						|
      SAFMAX = ONE / SAFMIN
 | 
						|
*
 | 
						|
*     Scale A
 | 
						|
*
 | 
						|
      ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
 | 
						|
      ANRM1 = ANRM
 | 
						|
      ANRM2 = ONE
 | 
						|
      IF( ANRM.LT.ONE ) THEN
 | 
						|
         IF( SAFMAX*ANRM.LT.ONE ) THEN
 | 
						|
            ANRM1 = SAFMIN
 | 
						|
            ANRM2 = SAFMAX*ANRM
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ANRM.GT.ZERO ) THEN
 | 
						|
         CALL CLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 10
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale B
 | 
						|
*
 | 
						|
      BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
 | 
						|
      BNRM1 = BNRM
 | 
						|
      BNRM2 = ONE
 | 
						|
      IF( BNRM.LT.ONE ) THEN
 | 
						|
         IF( SAFMAX*BNRM.LT.ONE ) THEN
 | 
						|
            BNRM1 = SAFMIN
 | 
						|
            BNRM2 = SAFMAX*BNRM
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( BNRM.GT.ZERO ) THEN
 | 
						|
         CALL CLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 10
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Permute the matrix to make it more nearly triangular
 | 
						|
*     Also "balance" the matrix.
 | 
						|
*
 | 
						|
      ILEFT = 1
 | 
						|
      IRIGHT = N + 1
 | 
						|
      IRWORK = IRIGHT + N
 | 
						|
      CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
 | 
						|
     $             RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 1
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Reduce B to triangular form, and initialize VL and/or VR
 | 
						|
*
 | 
						|
      IROWS = IHI + 1 - ILO
 | 
						|
      IF( ILV ) THEN
 | 
						|
         ICOLS = N + 1 - ILO
 | 
						|
      ELSE
 | 
						|
         ICOLS = IROWS
 | 
						|
      END IF
 | 
						|
      ITAU = 1
 | 
						|
      IWORK = ITAU + IROWS
 | 
						|
      CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | 
						|
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 2
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | 
						|
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
 | 
						|
     $             LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 3
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVL ) THEN
 | 
						|
         CALL CLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
 | 
						|
         CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | 
						|
     $                VL( ILO+1, ILO ), LDVL )
 | 
						|
         CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
 | 
						|
     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
 | 
						|
     $                IINFO )
 | 
						|
         IF( IINFO.GE.0 )
 | 
						|
     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 4
 | 
						|
            GO TO 80
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVR )
 | 
						|
     $   CALL CLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
 | 
						|
*
 | 
						|
*     Reduce to generalized Hessenberg form
 | 
						|
*
 | 
						|
      IF( ILV ) THEN
 | 
						|
*
 | 
						|
*        Eigenvectors requested -- work on whole matrix.
 | 
						|
*
 | 
						|
         CALL CGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
 | 
						|
     $                LDVL, VR, LDVR, IINFO )
 | 
						|
      ELSE
 | 
						|
         CALL CGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
 | 
						|
     $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
 | 
						|
      END IF
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 5
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Perform QZ algorithm
 | 
						|
*
 | 
						|
      IWORK = ITAU
 | 
						|
      IF( ILV ) THEN
 | 
						|
         CHTEMP = 'S'
 | 
						|
      ELSE
 | 
						|
         CHTEMP = 'E'
 | 
						|
      END IF
 | 
						|
      CALL CHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
 | 
						|
     $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
 | 
						|
     $             LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
 | 
						|
            INFO = IINFO
 | 
						|
         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
 | 
						|
            INFO = IINFO - N
 | 
						|
         ELSE
 | 
						|
            INFO = N + 6
 | 
						|
         END IF
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILV ) THEN
 | 
						|
*
 | 
						|
*        Compute Eigenvectors
 | 
						|
*
 | 
						|
         IF( ILVL ) THEN
 | 
						|
            IF( ILVR ) THEN
 | 
						|
               CHTEMP = 'B'
 | 
						|
            ELSE
 | 
						|
               CHTEMP = 'L'
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            CHTEMP = 'R'
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         CALL CTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
 | 
						|
     $                VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
 | 
						|
     $                IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 7
 | 
						|
            GO TO 80
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Undo balancing on VL and VR, rescale
 | 
						|
*
 | 
						|
         IF( ILVL ) THEN
 | 
						|
            CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
 | 
						|
     $                   RWORK( IRIGHT ), N, VL, LDVL, IINFO )
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               INFO = N + 8
 | 
						|
               GO TO 80
 | 
						|
            END IF
 | 
						|
            DO 30 JC = 1, N
 | 
						|
               TEMP = ZERO
 | 
						|
               DO 10 JR = 1, N
 | 
						|
                  TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
 | 
						|
   10          CONTINUE
 | 
						|
               IF( TEMP.LT.SAFMIN )
 | 
						|
     $            GO TO 30
 | 
						|
               TEMP = ONE / TEMP
 | 
						|
               DO 20 JR = 1, N
 | 
						|
                  VL( JR, JC ) = VL( JR, JC )*TEMP
 | 
						|
   20          CONTINUE
 | 
						|
   30       CONTINUE
 | 
						|
         END IF
 | 
						|
         IF( ILVR ) THEN
 | 
						|
            CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
 | 
						|
     $                   RWORK( IRIGHT ), N, VR, LDVR, IINFO )
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               INFO = N + 9
 | 
						|
               GO TO 80
 | 
						|
            END IF
 | 
						|
            DO 60 JC = 1, N
 | 
						|
               TEMP = ZERO
 | 
						|
               DO 40 JR = 1, N
 | 
						|
                  TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
 | 
						|
   40          CONTINUE
 | 
						|
               IF( TEMP.LT.SAFMIN )
 | 
						|
     $            GO TO 60
 | 
						|
               TEMP = ONE / TEMP
 | 
						|
               DO 50 JR = 1, N
 | 
						|
                  VR( JR, JC ) = VR( JR, JC )*TEMP
 | 
						|
   50          CONTINUE
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        End of eigenvector calculation
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling in alpha, beta
 | 
						|
*
 | 
						|
*     Note: this does not give the alpha and beta for the unscaled
 | 
						|
*     problem.
 | 
						|
*
 | 
						|
*     Un-scaling is limited to avoid underflow in alpha and beta
 | 
						|
*     if they are significant.
 | 
						|
*
 | 
						|
      DO 70 JC = 1, N
 | 
						|
         ABSAR = ABS( REAL( ALPHA( JC ) ) )
 | 
						|
         ABSAI = ABS( AIMAG( ALPHA( JC ) ) )
 | 
						|
         ABSB = ABS( REAL( BETA( JC ) ) )
 | 
						|
         SALFAR = ANRM*REAL( ALPHA( JC ) )
 | 
						|
         SALFAI = ANRM*AIMAG( ALPHA( JC ) )
 | 
						|
         SBETA = BNRM*REAL( BETA( JC ) )
 | 
						|
         ILIMIT = .FALSE.
 | 
						|
         SCALE = ONE
 | 
						|
*
 | 
						|
*        Check for significant underflow in imaginary part of ALPHA
 | 
						|
*
 | 
						|
         IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
 | 
						|
     $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
 | 
						|
            ILIMIT = .TRUE.
 | 
						|
            SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Check for significant underflow in real part of ALPHA
 | 
						|
*
 | 
						|
         IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
 | 
						|
     $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
 | 
						|
            ILIMIT = .TRUE.
 | 
						|
            SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
 | 
						|
     $              MAX( SAFMIN, ANRM2*ABSAR ) )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Check for significant underflow in BETA
 | 
						|
*
 | 
						|
         IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
 | 
						|
     $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
 | 
						|
            ILIMIT = .TRUE.
 | 
						|
            SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
 | 
						|
     $              MAX( SAFMIN, BNRM2*ABSB ) )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Check for possible overflow when limiting scaling
 | 
						|
*
 | 
						|
         IF( ILIMIT ) THEN
 | 
						|
            TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
 | 
						|
     $             ABS( SBETA ) )
 | 
						|
            IF( TEMP.GT.ONE )
 | 
						|
     $         SCALE = SCALE / TEMP
 | 
						|
            IF( SCALE.LT.ONE )
 | 
						|
     $         ILIMIT = .FALSE.
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Recompute un-scaled ALPHA, BETA if necessary.
 | 
						|
*
 | 
						|
         IF( ILIMIT ) THEN
 | 
						|
            SALFAR = ( SCALE*REAL( ALPHA( JC ) ) )*ANRM
 | 
						|
            SALFAI = ( SCALE*AIMAG( ALPHA( JC ) ) )*ANRM
 | 
						|
            SBETA = ( SCALE*BETA( JC ) )*BNRM
 | 
						|
         END IF
 | 
						|
         ALPHA( JC ) = CMPLX( SALFAR, SALFAI )
 | 
						|
         BETA( JC ) = SBETA
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
   80 CONTINUE
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGEGV
 | 
						|
*
 | 
						|
      END
 |