242 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZTZRQF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZTZRQF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), TAU( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This routine is deprecated and has been replaced by routine ZTZRZF.
 | |
| *>
 | |
| *> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
 | |
| *> to upper triangular form by means of unitary transformations.
 | |
| *>
 | |
| *> The upper trapezoidal matrix A is factored as
 | |
| *>
 | |
| *>    A = ( R  0 ) * Z,
 | |
| *>
 | |
| *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
 | |
| *> triangular matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the leading M-by-N upper trapezoidal part of the
 | |
| *>          array A must contain the matrix to be factorized.
 | |
| *>          On exit, the leading M-by-M upper triangular part of A
 | |
| *>          contains the upper triangular matrix R, and elements M+1 to
 | |
| *>          N of the first M rows of A, with the array TAU, represent the
 | |
| *>          unitary matrix Z as a product of M elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX*16 array, dimension (M)
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The  factorization is obtained by Householder's method.  The kth
 | |
| *>  transformation matrix, Z( k ), whose conjugate transpose is used to
 | |
| *>  introduce zeros into the (m - k + 1)th row of A, is given in the form
 | |
| *>
 | |
| *>     Z( k ) = ( I     0   ),
 | |
| *>              ( 0  T( k ) )
 | |
| *>
 | |
| *>  where
 | |
| *>
 | |
| *>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
 | |
| *>                                                   (   0    )
 | |
| *>                                                   ( z( k ) )
 | |
| *>
 | |
| *>  tau is a scalar and z( k ) is an ( n - m ) element vector.
 | |
| *>  tau and z( k ) are chosen to annihilate the elements of the kth row
 | |
| *>  of X.
 | |
| *>
 | |
| *>  The scalar tau is returned in the kth element of TAU and the vector
 | |
| *>  u( k ) in the kth row of A, such that the elements of z( k ) are
 | |
| *>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
 | |
| *>  the upper triangular part of A.
 | |
| *>
 | |
| *>  Z is given by
 | |
| *>
 | |
| *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), TAU( * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | |
|      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, K, M1
 | |
|       COMPLEX*16         ALPHA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCONJG, MAX, MIN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
 | |
|      $                   ZLARFG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.M ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZTZRQF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Perform the factorization.
 | |
| *
 | |
|       IF( M.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( M.EQ.N ) THEN
 | |
|          DO 10 I = 1, N
 | |
|             TAU( I ) = CZERO
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          M1 = MIN( M+1, N )
 | |
|          DO 20 K = M, 1, -1
 | |
| *
 | |
| *           Use a Householder reflection to zero the kth row of A.
 | |
| *           First set up the reflection.
 | |
| *
 | |
|             A( K, K ) = DCONJG( A( K, K ) )
 | |
|             CALL ZLACGV( N-M, A( K, M1 ), LDA )
 | |
|             ALPHA = A( K, K )
 | |
|             CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
 | |
|             A( K, K ) = ALPHA
 | |
|             TAU( K ) = DCONJG( TAU( K ) )
 | |
| *
 | |
|             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
 | |
| *
 | |
| *              We now perform the operation  A := A*P( k )**H.
 | |
| *
 | |
| *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
 | |
| *              where  a( k ) consists of the first ( k - 1 ) elements of
 | |
| *              the  kth column  of  A.  Also  let  B  denote  the  first
 | |
| *              ( k - 1 ) rows of the last ( n - m ) columns of A.
 | |
| *
 | |
|                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
 | |
| *
 | |
| *              Form   w = a( k ) + B*z( k )  in TAU.
 | |
| *
 | |
|                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
 | |
|      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
 | |
| *
 | |
| *              Now form  a( k ) := a( k ) - conjg(tau)*w
 | |
| *              and       B      := B      - conjg(tau)*w*z( k )**H.
 | |
| *
 | |
|                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
 | |
|      $                     1 )
 | |
|                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
 | |
|      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTZRQF
 | |
| *
 | |
|       END
 |