593 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			593 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGGEV + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggev.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggev.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggev.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 | |
| *                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVL, JOBVR
 | |
| *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
 | |
| *      $                   VR( LDVR, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
 | |
| *> the generalized eigenvalues, and optionally, the left and/or right
 | |
| *> generalized eigenvectors.
 | |
| *>
 | |
| *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
 | |
| *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
 | |
| *> singular. It is usually represented as the pair (alpha,beta), as
 | |
| *> there is a reasonable interpretation for beta=0, and even for both
 | |
| *> being zero.
 | |
| *>
 | |
| *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
 | |
| *> of (A,B) satisfies
 | |
| *>
 | |
| *>                  A * v(j) = lambda(j) * B * v(j).
 | |
| *>
 | |
| *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
 | |
| *> of (A,B) satisfies
 | |
| *>
 | |
| *>                  u(j)**H * A  = lambda(j) * u(j)**H * B .
 | |
| *>
 | |
| *> where u(j)**H is the conjugate-transpose of u(j).
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVL
 | |
| *> \verbatim
 | |
| *>          JOBVL is CHARACTER*1
 | |
| *>          = 'N':  do not compute the left generalized eigenvectors;
 | |
| *>          = 'V':  compute the left generalized eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVR
 | |
| *> \verbatim
 | |
| *>          JOBVR is CHARACTER*1
 | |
| *>          = 'N':  do not compute the right generalized eigenvectors;
 | |
| *>          = 'V':  compute the right generalized eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, VL, and VR.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          On entry, the matrix A in the pair (A,B).
 | |
| *>          On exit, A has been overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB, N)
 | |
| *>          On entry, the matrix B in the pair (A,B).
 | |
| *>          On exit, B has been overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL array, dimension (N)
 | |
| *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
 | |
| *>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
 | |
| *>          the j-th eigenvalue is real; if positive, then the j-th and
 | |
| *>          (j+1)-st eigenvalues are a complex conjugate pair, with
 | |
| *>          ALPHAI(j+1) negative.
 | |
| *>
 | |
| *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
 | |
| *>          may easily over- or underflow, and BETA(j) may even be zero.
 | |
| *>          Thus, the user should avoid naively computing the ratio
 | |
| *>          alpha/beta.  However, ALPHAR and ALPHAI will be always less
 | |
| *>          than and usually comparable with norm(A) in magnitude, and
 | |
| *>          BETA always less than and usually comparable with norm(B).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL array, dimension (LDVL,N)
 | |
| *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | |
| *>          after another in the columns of VL, in the same order as
 | |
| *>          their eigenvalues. If the j-th eigenvalue is real, then
 | |
| *>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
 | |
| *>          (j+1)-th eigenvalues form a complex conjugate pair, then
 | |
| *>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
 | |
| *>          Each eigenvector is scaled so the largest component has
 | |
| *>          abs(real part)+abs(imag. part)=1.
 | |
| *>          Not referenced if JOBVL = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the matrix VL. LDVL >= 1, and
 | |
| *>          if JOBVL = 'V', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is REAL array, dimension (LDVR,N)
 | |
| *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | |
| *>          after another in the columns of VR, in the same order as
 | |
| *>          their eigenvalues. If the j-th eigenvalue is real, then
 | |
| *>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
 | |
| *>          (j+1)-th eigenvalues form a complex conjugate pair, then
 | |
| *>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
 | |
| *>          Each eigenvector is scaled so the largest component has
 | |
| *>          abs(real part)+abs(imag. part)=1.
 | |
| *>          Not referenced if JOBVR = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the matrix VR. LDVR >= 1, and
 | |
| *>          if JOBVR = 'V', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,8*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1,...,N:
 | |
| *>                The QZ iteration failed.  No eigenvectors have been
 | |
| *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
 | |
| *>                should be correct for j=INFO+1,...,N.
 | |
| *>          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
 | |
| *>                =N+2: error return from STGEVC.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup realGEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 | |
|      $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVL, JOBVR
 | |
|       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
 | |
|      $                   VR( LDVR, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
 | |
|       CHARACTER          CHTEMP
 | |
|       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
 | |
|      $                   IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK,
 | |
|      $                   MINWRK
 | |
|       REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | |
|      $                   SMLNUM, TEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            LDUMMA( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD,
 | |
|      $                   SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode the input arguments
 | |
| *
 | |
|       IF( LSAME( JOBVL, 'N' ) ) THEN
 | |
|          IJOBVL = 1
 | |
|          ILVL = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
 | |
|          IJOBVL = 2
 | |
|          ILVL = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVL = -1
 | |
|          ILVL = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOBVR, 'N' ) ) THEN
 | |
|          IJOBVR = 1
 | |
|          ILVR = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
 | |
|          IJOBVR = 2
 | |
|          ILVR = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVR = -1
 | |
|          ILVR = .FALSE.
 | |
|       END IF
 | |
|       ILV = ILVL .OR. ILVR
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( IJOBVL.LE.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IJOBVR.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -14
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV. The workspace is
 | |
| *       computed assuming ILO = 1 and IHI = N, the worst case.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          MINWRK = MAX( 1, 8*N )
 | |
|          MAXWRK = MAX( 1, N*( 7 +
 | |
|      $                 ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) ) )
 | |
|          MAXWRK = MAX( MAXWRK, N*( 7 +
 | |
|      $                 ILAENV( 1, 'SORMQR', ' ', N, 1, N, 0 ) ) )
 | |
|          IF( ILVL ) THEN
 | |
|             MAXWRK = MAX( MAXWRK, N*( 7 +
 | |
|      $                 ILAENV( 1, 'SORGQR', ' ', N, 1, N, -1 ) ) )
 | |
|          END IF
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
 | |
|      $      INFO = -16
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGGEV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
 | |
|       ILASCL = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ANRMTO = SMLNUM
 | |
|          ILASCL = .TRUE.
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ANRMTO = BIGNUM
 | |
|          ILASCL = .TRUE.
 | |
|       END IF
 | |
|       IF( ILASCL )
 | |
|      $   CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Scale B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
 | |
|       ILBSCL = .FALSE.
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
|          BNRMTO = SMLNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
|          BNRMTO = BIGNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       END IF
 | |
|       IF( ILBSCL )
 | |
|      $   CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
 | |
| *
 | |
| *     Permute the matrices A, B to isolate eigenvalues if possible
 | |
| *     (Workspace: need 6*N)
 | |
| *
 | |
|       ILEFT = 1
 | |
|       IRIGHT = N + 1
 | |
|       IWRK = IRIGHT + N
 | |
|       CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
 | |
|      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
 | |
| *
 | |
| *     Reduce B to triangular form (QR decomposition of B)
 | |
| *     (Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IROWS = IHI + 1 - ILO
 | |
|       IF( ILV ) THEN
 | |
|          ICOLS = N + 1 - ILO
 | |
|       ELSE
 | |
|          ICOLS = IROWS
 | |
|       END IF
 | |
|       ITAU = IWRK
 | |
|       IWRK = ITAU + IROWS
 | |
|       CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | |
|      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Apply the orthogonal transformation to matrix A
 | |
| *     (Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | |
|      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
 | |
|      $             LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Initialize VL
 | |
| *     (Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IF( ILVL ) THEN
 | |
|          CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
 | |
|          IF( IROWS.GT.1 ) THEN
 | |
|             CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | |
|      $                   VL( ILO+1, ILO ), LDVL )
 | |
|          END IF
 | |
|          CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
 | |
|      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Initialize VR
 | |
| *
 | |
|       IF( ILVR )
 | |
|      $   CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
 | |
| *
 | |
| *     Reduce to generalized Hessenberg form
 | |
| *     (Workspace: none needed)
 | |
| *
 | |
|       IF( ILV ) THEN
 | |
| *
 | |
| *        Eigenvectors requested -- work on whole matrix.
 | |
| *
 | |
|          CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
 | |
|      $                LDVL, VR, LDVR, IERR )
 | |
|       ELSE
 | |
|          CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
 | |
|      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
 | |
| *     Schur forms and Schur vectors)
 | |
| *     (Workspace: need N)
 | |
| *
 | |
|       IWRK = ITAU
 | |
|       IF( ILV ) THEN
 | |
|          CHTEMP = 'S'
 | |
|       ELSE
 | |
|          CHTEMP = 'E'
 | |
|       END IF
 | |
|       CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
 | |
|      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
|       IF( IERR.NE.0 ) THEN
 | |
|          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
 | |
|             INFO = IERR
 | |
|          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
 | |
|             INFO = IERR - N
 | |
|          ELSE
 | |
|             INFO = N + 1
 | |
|          END IF
 | |
|          GO TO 110
 | |
|       END IF
 | |
| *
 | |
| *     Compute Eigenvectors
 | |
| *     (Workspace: need 6*N)
 | |
| *
 | |
|       IF( ILV ) THEN
 | |
|          IF( ILVL ) THEN
 | |
|             IF( ILVR ) THEN
 | |
|                CHTEMP = 'B'
 | |
|             ELSE
 | |
|                CHTEMP = 'L'
 | |
|             END IF
 | |
|          ELSE
 | |
|             CHTEMP = 'R'
 | |
|          END IF
 | |
|          CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
 | |
|      $                VR, LDVR, N, IN, WORK( IWRK ), IERR )
 | |
|          IF( IERR.NE.0 ) THEN
 | |
|             INFO = N + 2
 | |
|             GO TO 110
 | |
|          END IF
 | |
| *
 | |
| *        Undo balancing on VL and VR and normalization
 | |
| *        (Workspace: none needed)
 | |
| *
 | |
|          IF( ILVL ) THEN
 | |
|             CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
 | |
|      $                   WORK( IRIGHT ), N, VL, LDVL, IERR )
 | |
|             DO 50 JC = 1, N
 | |
|                IF( ALPHAI( JC ).LT.ZERO )
 | |
|      $            GO TO 50
 | |
|                TEMP = ZERO
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 10 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
 | |
|    10             CONTINUE
 | |
|                ELSE
 | |
|                   DO 20 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
 | |
|      $                      ABS( VL( JR, JC+1 ) ) )
 | |
|    20             CONTINUE
 | |
|                END IF
 | |
|                IF( TEMP.LT.SMLNUM )
 | |
|      $            GO TO 50
 | |
|                TEMP = ONE / TEMP
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 30 JR = 1, N
 | |
|                      VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|    30             CONTINUE
 | |
|                ELSE
 | |
|                   DO 40 JR = 1, N
 | |
|                      VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
 | |
|    40             CONTINUE
 | |
|                END IF
 | |
|    50       CONTINUE
 | |
|          END IF
 | |
|          IF( ILVR ) THEN
 | |
|             CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
 | |
|      $                   WORK( IRIGHT ), N, VR, LDVR, IERR )
 | |
|             DO 100 JC = 1, N
 | |
|                IF( ALPHAI( JC ).LT.ZERO )
 | |
|      $            GO TO 100
 | |
|                TEMP = ZERO
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 60 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
 | |
|    60             CONTINUE
 | |
|                ELSE
 | |
|                   DO 70 JR = 1, N
 | |
|                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
 | |
|      $                      ABS( VR( JR, JC+1 ) ) )
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
|                IF( TEMP.LT.SMLNUM )
 | |
|      $            GO TO 100
 | |
|                TEMP = ONE / TEMP
 | |
|                IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                   DO 80 JR = 1, N
 | |
|                      VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|    80             CONTINUE
 | |
|                ELSE
 | |
|                   DO 90 JR = 1, N
 | |
|                      VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
 | |
|    90             CONTINUE
 | |
|                END IF
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        End of eigenvector calculation
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|   110 CONTINUE
 | |
| *
 | |
|       IF( ILASCL ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
 | |
|          CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( ILBSCL ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGGEV
 | |
| *
 | |
|       END
 |