256 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DORGTR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DORGTR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DORGTR generates a real orthogonal matrix Q which is defined as the
 | |
| *> product of n-1 elementary reflectors of order N, as returned by
 | |
| *> DSYTRD:
 | |
| *>
 | |
| *> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
 | |
| *>
 | |
| *> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U': Upper triangle of A contains elementary reflectors
 | |
| *>                 from DSYTRD;
 | |
| *>          = 'L': Lower triangle of A contains elementary reflectors
 | |
| *>                 from DSYTRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix Q. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the vectors which define the elementary reflectors,
 | |
| *>          as returned by DSYTRD.
 | |
| *>          On exit, the N-by-N orthogonal matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i), as returned by DSYTRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,N-1).
 | |
| *>          For optimum performance LWORK >= (N-1)*NB, where NB is
 | |
| *>          the optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER
 | |
|       INTEGER            I, IINFO, J, LWKOPT, NB
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DORGQL, DORGQR, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( UPPER ) THEN
 | |
|             NB = ILAENV( 1, 'DORGQL', ' ', N-1, N-1, N-1, -1 )
 | |
|          ELSE
 | |
|             NB = ILAENV( 1, 'DORGQR', ' ', N-1, N-1, N-1, -1 )
 | |
|          END IF
 | |
|          LWKOPT = MAX( 1, N-1 )*NB
 | |
|          WORK( 1 ) = LWKOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DORGTR', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Q was determined by a call to DSYTRD with UPLO = 'U'
 | |
| *
 | |
| *        Shift the vectors which define the elementary reflectors one
 | |
| *        column to the left, and set the last row and column of Q to
 | |
| *        those of the unit matrix
 | |
| *
 | |
|          DO 20 J = 1, N - 1
 | |
|             DO 10 I = 1, J - 1
 | |
|                A( I, J ) = A( I, J+1 )
 | |
|    10       CONTINUE
 | |
|             A( N, J ) = ZERO
 | |
|    20    CONTINUE
 | |
|          DO 30 I = 1, N - 1
 | |
|             A( I, N ) = ZERO
 | |
|    30    CONTINUE
 | |
|          A( N, N ) = ONE
 | |
| *
 | |
| *        Generate Q(1:n-1,1:n-1)
 | |
| *
 | |
|          CALL DORGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Q was determined by a call to DSYTRD with UPLO = 'L'.
 | |
| *
 | |
| *        Shift the vectors which define the elementary reflectors one
 | |
| *        column to the right, and set the first row and column of Q to
 | |
| *        those of the unit matrix
 | |
| *
 | |
|          DO 50 J = N, 2, -1
 | |
|             A( 1, J ) = ZERO
 | |
|             DO 40 I = J + 1, N
 | |
|                A( I, J ) = A( I, J-1 )
 | |
|    40       CONTINUE
 | |
|    50    CONTINUE
 | |
|          A( 1, 1 ) = ONE
 | |
|          DO 60 I = 2, N
 | |
|             A( I, 1 ) = ZERO
 | |
|    60    CONTINUE
 | |
|          IF( N.GT.1 ) THEN
 | |
| *
 | |
| *           Generate Q(2:n,2:n)
 | |
| *
 | |
|             CALL DORGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
 | |
|      $                   LWORK, IINFO )
 | |
|          END IF
 | |
|       END IF
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of DORGTR
 | |
| *
 | |
|       END
 |