353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGEHRD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGEHRD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgehrd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgehrd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgehrd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHI, ILO, INFO, LDA, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGEHRD reduces a complex general matrix A to upper Hessenberg form H by
 | |
| *> an unitary similarity transformation:  Q**H * A * Q = H .
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>
 | |
| *>          It is assumed that A is already upper triangular in rows
 | |
| *>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
 | |
| *>          set by a previous call to CGEBAL; otherwise they should be
 | |
| *>          set to 1 and N respectively. See Further Details.
 | |
| *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the N-by-N general matrix to be reduced.
 | |
| *>          On exit, the upper triangle and the first subdiagonal of A
 | |
| *>          are overwritten with the upper Hessenberg matrix H, and the
 | |
| *>          elements below the first subdiagonal, with the array TAU,
 | |
| *>          represent the unitary matrix Q as a product of elementary
 | |
| *>          reflectors. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (N-1)
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
 | |
| *>          zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= max(1,N).
 | |
| *>          For optimum performance LWORK >= N*NB, where NB is the
 | |
| *>          optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of (ihi-ilo) elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**H
 | |
| *>
 | |
| *>  where tau is a complex scalar, and v is a complex vector with
 | |
| *>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
 | |
| *>  exit in A(i+2:ihi,i), and tau in TAU(i).
 | |
| *>
 | |
| *>  The contents of A are illustrated by the following example, with
 | |
| *>  n = 7, ilo = 2 and ihi = 6:
 | |
| *>
 | |
| *>  on entry,                        on exit,
 | |
| *>
 | |
| *>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
 | |
| *>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
 | |
| *>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
 | |
| *>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
 | |
| *>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
 | |
| *>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
 | |
| *>  (                         a )    (                          a )
 | |
| *>
 | |
| *>  where a denotes an element of the original matrix A, h denotes a
 | |
| *>  modified element of the upper Hessenberg matrix H, and vi denotes an
 | |
| *>  element of the vector defining H(i).
 | |
| *>
 | |
| *>  This file is a slight modification of LAPACK-3.0's DGEHRD
 | |
| *>  subroutine incorporating improvements proposed by Quintana-Orti and
 | |
| *>  Van de Geijn (2006). (See DLAHR2.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHI, ILO, INFO, LDA, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            NBMAX, LDT
 | |
|       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
 | |
|       COMPLEX            ZERO, ONE
 | |
|       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ), 
 | |
|      $                     ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
 | |
|      $                   NBMIN, NH, NX
 | |
|       COMPLEX            EI
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       COMPLEX            T( LDT, NBMAX )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CAXPY, CGEHD2, CGEMM, CLAHR2, CLARFB, CTRMM,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       NB = MIN( NBMAX, ILAENV( 1, 'CGEHRD', ' ', N, ILO, IHI, -1 ) )
 | |
|       LWKOPT = N*NB
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGEHRD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
 | |
| *
 | |
|       DO 10 I = 1, ILO - 1
 | |
|          TAU( I ) = ZERO
 | |
|    10 CONTINUE
 | |
|       DO 20 I = MAX( 1, IHI ), N - 1
 | |
|          TAU( I ) = ZERO
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       NH = IHI - ILO + 1
 | |
|       IF( NH.LE.1 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine the block size
 | |
| *
 | |
|       NB = MIN( NBMAX, ILAENV( 1, 'CGEHRD', ' ', N, ILO, IHI, -1 ) )
 | |
|       NBMIN = 2
 | |
|       IWS = 1
 | |
|       IF( NB.GT.1 .AND. NB.LT.NH ) THEN
 | |
| *
 | |
| *        Determine when to cross over from blocked to unblocked code
 | |
| *        (last block is always handled by unblocked code)
 | |
| *
 | |
|          NX = MAX( NB, ILAENV( 3, 'CGEHRD', ' ', N, ILO, IHI, -1 ) )
 | |
|          IF( NX.LT.NH ) THEN
 | |
| *
 | |
| *           Determine if workspace is large enough for blocked code
 | |
| *
 | |
|             IWS = N*NB
 | |
|             IF( LWORK.LT.IWS ) THEN
 | |
| *
 | |
| *              Not enough workspace to use optimal NB:  determine the
 | |
| *              minimum value of NB, and reduce NB or force use of
 | |
| *              unblocked code
 | |
| *
 | |
|                NBMIN = MAX( 2, ILAENV( 2, 'CGEHRD', ' ', N, ILO, IHI,
 | |
|      $                 -1 ) )
 | |
|                IF( LWORK.GE.N*NBMIN ) THEN
 | |
|                   NB = LWORK / N
 | |
|                ELSE
 | |
|                   NB = 1
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       LDWORK = N
 | |
| *
 | |
|       IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
 | |
| *
 | |
| *        Use unblocked code below
 | |
| *
 | |
|          I = ILO
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code
 | |
| *
 | |
|          DO 40 I = ILO, IHI - 1 - NX, NB
 | |
|             IB = MIN( NB, IHI-I )
 | |
| *
 | |
| *           Reduce columns i:i+ib-1 to Hessenberg form, returning the
 | |
| *           matrices V and T of the block reflector H = I - V*T*V**H
 | |
| *           which performs the reduction, and also the matrix Y = A*V*T
 | |
| *
 | |
|             CALL CLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
 | |
|      $                   WORK, LDWORK )
 | |
| *
 | |
| *           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
 | |
| *           right, computing  A := A - Y * V**H. V(i+ib,ib-1) must be set
 | |
| *           to 1
 | |
| *
 | |
|             EI = A( I+IB, I+IB-1 )
 | |
|             A( I+IB, I+IB-1 ) = ONE
 | |
|             CALL CGEMM( 'No transpose', 'Conjugate transpose', 
 | |
|      $                  IHI, IHI-I-IB+1,
 | |
|      $                  IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
 | |
|      $                  A( 1, I+IB ), LDA )
 | |
|             A( I+IB, I+IB-1 ) = EI
 | |
| *
 | |
| *           Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
 | |
| *           right
 | |
| *
 | |
|             CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
 | |
|      $                  'Unit', I, IB-1,
 | |
|      $                  ONE, A( I+1, I ), LDA, WORK, LDWORK )
 | |
|             DO 30 J = 0, IB-2
 | |
|                CALL CAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
 | |
|      $                     A( 1, I+J+1 ), 1 )
 | |
|    30       CONTINUE
 | |
| *
 | |
| *           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
 | |
| *           left
 | |
| *
 | |
|             CALL CLARFB( 'Left', 'Conjugate transpose', 'Forward',
 | |
|      $                   'Columnwise',
 | |
|      $                   IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
 | |
|      $                   A( I+1, I+IB ), LDA, WORK, LDWORK )
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Use unblocked code to reduce the rest of the matrix
 | |
| *
 | |
|       CALL CGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
 | |
|       WORK( 1 ) = IWS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGEHRD
 | |
| *
 | |
|       END
 |