281 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGET51
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
 | 
						|
*                          RWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
 | 
						|
*       DOUBLE PRECISION   RESULT
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
 | 
						|
*      $                   V( LDV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>      ZGET51  generally checks a decomposition of the form
 | 
						|
*>
 | 
						|
*>              A = U B VC>
 | 
						|
*>      where * means conjugate transpose and U and V are unitary.
 | 
						|
*>
 | 
						|
*>      Specifically, if ITYPE=1
 | 
						|
*>
 | 
						|
*>              RESULT = | A - U B V* | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*>      If ITYPE=2, then:
 | 
						|
*>
 | 
						|
*>              RESULT = | A - B | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*>      If ITYPE=3, then:
 | 
						|
*>
 | 
						|
*>              RESULT = | I - UU* | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          Specifies the type of tests to be performed.
 | 
						|
*>          =1: RESULT = | A - U B V* | / ( |A| n ulp )
 | 
						|
*>          =2: RESULT = | A - B | / ( |A| n ulp )
 | 
						|
*>          =3: RESULT = | I - UU* | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, ZGET51 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA, N)
 | 
						|
*>          The original (unfactored) matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB, N)
 | 
						|
*>          The factored matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX*16 array, dimension (LDU, N)
 | 
						|
*>          The unitary matrix on the left-hand side in the
 | 
						|
*>          decomposition.
 | 
						|
*>          Not referenced if ITYPE=2
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX*16 array, dimension (LDV, N)
 | 
						|
*>          The unitary matrix on the left-hand side in the
 | 
						|
*>          decomposition.
 | 
						|
*>          Not referenced if ITYPE=2
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of V.  LDV must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (2*N**2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION
 | 
						|
*>          The values computed by the test specified by ITYPE.  The
 | 
						|
*>          value is currently limited to 1/ulp, to avoid overflow.
 | 
						|
*>          Errors are flagged by RESULT=10/ulp.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
 | 
						|
     $                   RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
 | 
						|
      DOUBLE PRECISION   RESULT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
 | 
						|
     $                   V( LDV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TEN
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            JCOL, JDIAG, JROW
 | 
						|
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE
 | 
						|
      EXTERNAL           DLAMCH, ZLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZGEMM, ZLACPY
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Constants
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | 
						|
*
 | 
						|
*     Some Error Checks
 | 
						|
*
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         RESULT = TEN / ULP
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.LE.2 ) THEN
 | 
						|
*
 | 
						|
*        Tests scaled by the norm(A)
 | 
						|
*
 | 
						|
         ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
 | 
						|
*
 | 
						|
         IF( ITYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           ITYPE=1: Compute W = A - UBV'
 | 
						|
*
 | 
						|
            CALL ZLACPY( ' ', N, N, A, LDA, WORK, N )
 | 
						|
            CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO,
 | 
						|
     $                  WORK( N**2+1 ), N )
 | 
						|
*
 | 
						|
            CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V,
 | 
						|
     $                  LDV, CONE, WORK, N )
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ITYPE=2: Compute W = A - B
 | 
						|
*
 | 
						|
            CALL ZLACPY( ' ', N, N, B, LDB, WORK, N )
 | 
						|
*
 | 
						|
            DO 20 JCOL = 1, N
 | 
						|
               DO 10 JROW = 1, N
 | 
						|
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
 | 
						|
     $                - A( JROW, JCOL )
 | 
						|
   10          CONTINUE
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute norm(W)/ ( ulp*norm(A) )
 | 
						|
*
 | 
						|
         WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
 | 
						|
*
 | 
						|
         IF( ANORM.GT.WNORM ) THEN
 | 
						|
            RESULT = ( WNORM / ANORM ) / ( N*ULP )
 | 
						|
         ELSE
 | 
						|
            IF( ANORM.LT.ONE ) THEN
 | 
						|
               RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | 
						|
            ELSE
 | 
						|
               RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Tests not scaled by norm(A)
 | 
						|
*
 | 
						|
*        ITYPE=3: Compute  UU' - I
 | 
						|
*
 | 
						|
         CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
 | 
						|
     $               WORK, N )
 | 
						|
*
 | 
						|
         DO 30 JDIAG = 1, N
 | 
						|
            WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
 | 
						|
     $         1 ) - CONE
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
         RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
 | 
						|
     $            DBLE( N ) ) / ( N*ULP )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGET51
 | 
						|
*
 | 
						|
      END
 |