321 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGBCON
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGBCON + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbcon.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbcon.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbcon.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
 | |
| *                          WORK, RWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            INFO, KL, KU, LDAB, N
 | |
| *       DOUBLE PRECISION   ANORM, RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         AB( LDAB, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGBCON estimates the reciprocal of the condition number of a complex
 | |
| *> general band matrix A, in either the 1-norm or the infinity-norm,
 | |
| *> using the LU factorization computed by ZGBTRF.
 | |
| *>
 | |
| *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | |
| *> condition number is computed as
 | |
| *>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies whether the 1-norm condition number or the
 | |
| *>          infinity-norm condition number is required:
 | |
| *>          = '1' or 'O':  1-norm;
 | |
| *>          = 'I':         Infinity-norm.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX*16 array, dimension (LDAB,N)
 | |
| *>          Details of the LU factorization of the band matrix A, as
 | |
| *>          computed by ZGBTRF.  U is stored as an upper triangular band
 | |
| *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
 | |
| *>          the multipliers used during the factorization are stored in
 | |
| *>          rows KL+KU+2 to 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= N, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ANORM
 | |
| *> \verbatim
 | |
| *>          ANORM is DOUBLE PRECISION
 | |
| *>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 | |
| *>          If NORM = 'I', the infinity-norm of the original matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal of the condition number of the matrix A,
 | |
| *>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16GBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
 | |
|      $                   WORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            INFO, KL, KU, LDAB, N
 | |
|       DOUBLE PRECISION   ANORM, RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         AB( LDAB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LNOTI, ONENRM
 | |
|       CHARACTER          NORMIN
 | |
|       INTEGER            IX, J, JP, KASE, KASE1, KD, LM
 | |
|       DOUBLE PRECISION   AINVNM, SCALE, SMLNUM
 | |
|       COMPLEX*16         T, ZDUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IZAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           LSAME, IZAMAX, DLAMCH, ZDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZAXPY, ZDRSCL, ZLACN2, ZLATBS
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DIMAG, MIN
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | |
|       IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KL.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KU.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( ANORM.LT.ZERO ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGBCON', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       RCOND = ZERO
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RETURN
 | |
|       ELSE IF( ANORM.EQ.ZERO ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'Safe minimum' )
 | |
| *
 | |
| *     Estimate the norm of inv(A).
 | |
| *
 | |
|       AINVNM = ZERO
 | |
|       NORMIN = 'N'
 | |
|       IF( ONENRM ) THEN
 | |
|          KASE1 = 1
 | |
|       ELSE
 | |
|          KASE1 = 2
 | |
|       END IF
 | |
|       KD = KL + KU + 1
 | |
|       LNOTI = KL.GT.0
 | |
|       KASE = 0
 | |
|    10 CONTINUE
 | |
|       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
|          IF( KASE.EQ.KASE1 ) THEN
 | |
| *
 | |
| *           Multiply by inv(L).
 | |
| *
 | |
|             IF( LNOTI ) THEN
 | |
|                DO 20 J = 1, N - 1
 | |
|                   LM = MIN( KL, N-J )
 | |
|                   JP = IPIV( J )
 | |
|                   T = WORK( JP )
 | |
|                   IF( JP.NE.J ) THEN
 | |
|                      WORK( JP ) = WORK( J )
 | |
|                      WORK( J ) = T
 | |
|                   END IF
 | |
|                   CALL ZAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
| *
 | |
| *           Multiply by inv(U).
 | |
| *
 | |
|             CALL ZLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
 | |
|      $                   KL+KU, AB, LDAB, WORK, SCALE, RWORK, INFO )
 | |
|          ELSE
 | |
| *
 | |
| *           Multiply by inv(U**H).
 | |
| *
 | |
|             CALL ZLATBS( 'Upper', 'Conjugate transpose', 'Non-unit',
 | |
|      $                   NORMIN, N, KL+KU, AB, LDAB, WORK, SCALE, RWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           Multiply by inv(L**H).
 | |
| *
 | |
|             IF( LNOTI ) THEN
 | |
|                DO 30 J = N - 1, 1, -1
 | |
|                   LM = MIN( KL, N-J )
 | |
|                   WORK( J ) = WORK( J ) - ZDOTC( LM, AB( KD+1, J ), 1,
 | |
|      $                        WORK( J+1 ), 1 )
 | |
|                   JP = IPIV( J )
 | |
|                   IF( JP.NE.J ) THEN
 | |
|                      T = WORK( JP )
 | |
|                      WORK( JP ) = WORK( J )
 | |
|                      WORK( J ) = T
 | |
|                   END IF
 | |
|    30          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Divide X by 1/SCALE if doing so will not cause overflow.
 | |
| *
 | |
|          NORMIN = 'Y'
 | |
|          IF( SCALE.NE.ONE ) THEN
 | |
|             IX = IZAMAX( N, WORK, 1 )
 | |
|             IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
 | |
|      $         GO TO 40
 | |
|             CALL ZDRSCL( N, SCALE, WORK, 1 )
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM.NE.ZERO )
 | |
|      $   RCOND = ( ONE / AINVNM ) / ANORM
 | |
| *
 | |
|    40 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGBCON
 | |
| *
 | |
|       END
 |