382 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			382 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZUNHR_COL02
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           M, N, MB1, NB1, NB2
 | |
| *       .. Return values ..
 | |
| *       DOUBLE PRECISION  RESULT(6)
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZUNHR_COL02 tests ZUNGTSQR_ROW and ZUNHR_COL inside ZGETSQRHRT
 | |
| *> (which calls ZLATSQR, ZUNGTSQR_ROW and ZUNHR_COL) using ZGEMQRT.
 | |
| *> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part of ZGEMQR)
 | |
| *> have to be tested before this test.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          Number of rows in test matrix.
 | |
| *> \endverbatim
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          Number of columns in test matrix.
 | |
| *> \endverbatim
 | |
| *> \param[in] MB1
 | |
| *> \verbatim
 | |
| *>          MB1 is INTEGER
 | |
| *>          Number of row in row block in an input test matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB1
 | |
| *> \verbatim
 | |
| *>          NB1 is INTEGER
 | |
| *>          Number of columns in column block an input test matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB2
 | |
| *> \verbatim
 | |
| *>          NB2 is INTEGER
 | |
| *>          Number of columns in column block in an output test matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (6)
 | |
| *>          Results of each of the six tests below.
 | |
| *>
 | |
| *>            A is a m-by-n test input matrix to be factored.
 | |
| *>            so that A = Q_gr * ( R )
 | |
| *>                               ( 0 ),
 | |
| *>
 | |
| *>            Q_qr is an implicit m-by-m unitary Q matrix, the result
 | |
| *>            of factorization in blocked WY-representation,
 | |
| *>            stored in ZGEQRT output format.
 | |
| *>
 | |
| *>            R is a n-by-n upper-triangular matrix,
 | |
| *>
 | |
| *>            0 is a (m-n)-by-n zero matrix,
 | |
| *>
 | |
| *>            Q is an explicit m-by-m unitary matrix Q = Q_gr * I
 | |
| *>
 | |
| *>            C is an m-by-n random matrix,
 | |
| *>
 | |
| *>            D is an n-by-m random matrix.
 | |
| *>
 | |
| *>          The six tests are:
 | |
| *>
 | |
| *>          RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| )
 | |
| *>            is equivalent to test for | A - Q * R | / (eps * m * |A|),
 | |
| *>
 | |
| *>          RESULT(2) = |I - (Q**H) * Q| / ( eps * m ),
 | |
| *>
 | |
| *>          RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|),
 | |
| *>
 | |
| *>          RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|)
 | |
| *>
 | |
| *>          RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|)
 | |
| *>
 | |
| *>          RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|),
 | |
| *>
 | |
| *>          where:
 | |
| *>            Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are
 | |
| *>            computed using ZGEMQRT,
 | |
| *>
 | |
| *>            Q * C, (Q**H) * C, D * Q, D * (Q**H)  are
 | |
| *>            computed using ZGEMM.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER           M, N, MB1, NB1, NB2
 | |
| *     .. Return values ..
 | |
|       DOUBLE PRECISION  RESULT(6)
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local allocatable arrays
 | |
|       COMPLEX*16      , ALLOCATABLE ::  A(:,:), AF(:,:), Q(:,:), R(:,:),
 | |
|      $                   WORK( : ), T1(:,:), T2(:,:), DIAG(:),
 | |
|      $                   C(:,:), CF(:,:), D(:,:), DF(:,:)
 | |
|       DOUBLE PRECISION, ALLOCATABLE :: RWORK(:)
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
|       COMPLEX*16         CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | |
|      $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            TESTZEROS
 | |
|       INTEGER            INFO, J, K, L, LWORK, NB2_UB, NRB
 | |
|       DOUBLE PRECISION   ANORM, EPS, RESID, CNORM, DNORM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       COMPLEX*16         WORKQUERY( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
 | |
|       EXTERNAL           DLAMCH, ZLANGE, ZLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLACPY, ZLARNV, ZLASET, ZGETSQRHRT,
 | |
|      $                   ZSCAL, ZGEMM, ZGEMQRT, ZHERK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CEILING, DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       CHARACTER(LEN=32)  SRNAMT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / SRMNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA ISEED / 1988, 1989, 1990, 1991 /
 | |
| *
 | |
| *     TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
 | |
| *
 | |
|       TESTZEROS = .FALSE.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       K = MIN( M, N )
 | |
|       L = MAX( M, N, 1)
 | |
| *
 | |
| *     Dynamically allocate local arrays
 | |
| *
 | |
|       ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
 | |
|      $           C(M,N), CF(M,N),
 | |
|      $           D(N,M), DF(N,M) )
 | |
| *
 | |
| *     Put random numbers into A and copy to AF
 | |
| *
 | |
|       DO J = 1, N
 | |
|          CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
 | |
|       END DO
 | |
|       IF( TESTZEROS ) THEN
 | |
|          IF( M.GE.4 ) THEN
 | |
|             DO J = 1, N
 | |
|                CALL ZLARNV( 2, ISEED, M/2, A( M/4, J ) )
 | |
|             END DO
 | |
|          END IF
 | |
|       END IF
 | |
|       CALL ZLACPY( 'Full', M, N, A, M, AF, M )
 | |
| *
 | |
| *     Number of row blocks in ZLATSQR
 | |
| *
 | |
|       NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
 | |
| *
 | |
|       ALLOCATE ( T1( NB1, N * NRB ) )
 | |
|       ALLOCATE ( T2( NB2, N ) )
 | |
|       ALLOCATE ( DIAG( N ) )
 | |
| *
 | |
| *     Begin determine LWORK for the array WORK and allocate memory.
 | |
| *
 | |
| *     ZGEMQRT requires NB2 to be bounded by N.
 | |
| *
 | |
|       NB2_UB = MIN( NB2, N)
 | |
| *
 | |
| *
 | |
|       CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
 | |
|      $                 WORKQUERY, -1, INFO )
 | |
| *
 | |
|       LWORK = INT( WORKQUERY( 1 ) )
 | |
| *
 | |
| *     In ZGEMQRT, WORK is N*NB2_UB if SIDE = 'L',
 | |
| *                or  M*NB2_UB if SIDE = 'R'.
 | |
| *
 | |
|       LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M )
 | |
| *
 | |
|       ALLOCATE ( WORK( LWORK ) )
 | |
| *
 | |
| *     End allocate memory for WORK.
 | |
| *
 | |
| *
 | |
| *     Begin Householder reconstruction routines
 | |
| *
 | |
| *     Factor the matrix A in the array AF.
 | |
| *
 | |
|       SRNAMT = 'ZGETSQRHRT'
 | |
|       CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
 | |
|      $                 WORK, LWORK, INFO )
 | |
| *
 | |
| *     End Householder reconstruction routines.
 | |
| *
 | |
| *
 | |
| *     Generate the m-by-m matrix Q
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, M )
 | |
| *
 | |
|       SRNAMT = 'ZGEMQRT'
 | |
|       CALL ZGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M,
 | |
|      $              WORK, INFO )
 | |
| *
 | |
| *     Copy R
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
 | |
| *
 | |
|       CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
 | |
| *
 | |
| *     TEST 1
 | |
| *     Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1)
 | |
| *
 | |
|       CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, A, M, CONE, R, M )
 | |
| *
 | |
|       ANORM = ZLANGE( '1', M, N, A, M, RWORK )
 | |
|       RESID = ZLANGE( '1', M, N, R, M, RWORK )
 | |
|       IF( ANORM.GT.ZERO ) THEN
 | |
|          RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM )
 | |
|       ELSE
 | |
|          RESULT( 1 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     TEST 2
 | |
| *     Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2)
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, M, CZERO, CONE, R, M )
 | |
|       CALL ZHERK( 'U', 'C', M, M, -CONE, Q, M, CONE, R, M )
 | |
|       RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
 | |
|       RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) )
 | |
| *
 | |
| *     Generate random m-by-n matrix C
 | |
| *
 | |
|       DO J = 1, N
 | |
|          CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
 | |
|       END DO
 | |
|       CNORM = ZLANGE( '1', M, N, C, M, RWORK )
 | |
|       CALL ZLACPY( 'Full', M, N, C, M, CF, M )
 | |
| *
 | |
| *     Apply Q to C as Q*C = CF
 | |
| *
 | |
|       SRNAMT = 'ZGEMQRT'
 | |
|       CALL ZGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
 | |
|      $               WORK, INFO )
 | |
| *
 | |
| *     TEST 3
 | |
| *     Compute |CF - Q*C| / ( eps *  m * |C| )
 | |
| *
 | |
|       CALL ZGEMM( 'N', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
 | |
|       RESID = ZLANGE( '1', M, N, CF, M, RWORK )
 | |
|       IF( CNORM.GT.ZERO ) THEN
 | |
|          RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
 | |
|       ELSE
 | |
|          RESULT( 3 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Copy C into CF again
 | |
| *
 | |
|       CALL ZLACPY( 'Full', M, N, C, M, CF, M )
 | |
| *
 | |
| *     Apply Q to C as (Q**T)*C = CF
 | |
| *
 | |
|       SRNAMT = 'ZGEMQRT'
 | |
|       CALL ZGEMQRT( 'L', 'C', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
 | |
|      $               WORK, INFO )
 | |
| *
 | |
| *     TEST 4
 | |
| *     Compute |CF - (Q**T)*C| / ( eps * m * |C|)
 | |
| *
 | |
|       CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
 | |
|       RESID = ZLANGE( '1', M, N, CF, M, RWORK )
 | |
|       IF( CNORM.GT.ZERO ) THEN
 | |
|          RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
 | |
|       ELSE
 | |
|          RESULT( 4 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Generate random n-by-m matrix D and a copy DF
 | |
| *
 | |
|       DO J = 1, M
 | |
|          CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
 | |
|       END DO
 | |
|       DNORM = ZLANGE( '1', N, M, D, N, RWORK )
 | |
|       CALL ZLACPY( 'Full', N, M, D, N, DF, N )
 | |
| *
 | |
| *     Apply Q to D as D*Q = DF
 | |
| *
 | |
|       SRNAMT = 'ZGEMQRT'
 | |
|       CALL ZGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
 | |
|      $               WORK, INFO )
 | |
| *
 | |
| *     TEST 5
 | |
| *     Compute |DF - D*Q| / ( eps * m * |D| )
 | |
| *
 | |
|       CALL ZGEMM( 'N', 'N', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
 | |
|       RESID = ZLANGE( '1', N, M, DF, N, RWORK )
 | |
|       IF( DNORM.GT.ZERO ) THEN
 | |
|          RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
 | |
|       ELSE
 | |
|          RESULT( 5 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Copy D into DF again
 | |
| *
 | |
|       CALL ZLACPY( 'Full', N, M, D, N, DF, N )
 | |
| *
 | |
| *     Apply Q to D as D*QT = DF
 | |
| *
 | |
|       SRNAMT = 'ZGEMQRT'
 | |
|       CALL ZGEMQRT( 'R', 'C', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
 | |
|      $               WORK, INFO )
 | |
| *
 | |
| *     TEST 6
 | |
| *     Compute |DF - D*(Q**T)| / ( eps * m * |D| )
 | |
| *
 | |
|       CALL ZGEMM( 'N', 'C', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
 | |
|       RESID = ZLANGE( '1', N, M, DF, N, RWORK )
 | |
|       IF( DNORM.GT.ZERO ) THEN
 | |
|          RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
 | |
|       ELSE
 | |
|          RESULT( 6 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Deallocate all arrays
 | |
| *
 | |
|       DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG,
 | |
|      $             C, D, CF, DF )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZUNHR_COL02
 | |
| *
 | |
|       END
 |