211 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CQPT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL             FUNCTION CQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
 | |
| *                        WORK, LWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            K, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       COMPLEX            A( LDA, * ), AF( LDA, * ), TAU( * ),
 | |
| *      $                   WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CQPT01 tests the QR-factorization with pivoting of a matrix A.  The
 | |
| *> array AF contains the (possibly partial) QR-factorization of A, where
 | |
| *> the upper triangle of AF(1:k,1:k) is a partial triangular factor,
 | |
| *> the entries below the diagonal in the first k columns are the
 | |
| *> Householder vectors, and the rest of AF contains a partially updated
 | |
| *> matrix.
 | |
| *>
 | |
| *> This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrices A and AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of columns of AF that have been reduced
 | |
| *>          to upper triangular form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          The original matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX array, dimension (LDA,N)
 | |
| *>          The (possibly partial) output of CGEQPF.  The upper triangle
 | |
| *>          of AF(1:k,1:k) is a partial triangular factor, the entries
 | |
| *>          below the diagonal in the first k columns are the Householder
 | |
| *>          vectors, and the rest of AF contains a partially updated
 | |
| *>          matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A and AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (K)
 | |
| *>          Details of the Householder transformations as returned by
 | |
| *>          CGEQPF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          Pivot information as returned by CGEQPF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= M*N+N.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL             FUNCTION CQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
 | |
|      $                 WORK, LWORK )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            K, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       COMPLEX            A( LDA, * ), AF( LDA, * ), TAU( * ),
 | |
|      $                   WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J
 | |
|       REAL               NORMA
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               RWORK( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       EXTERNAL           CLANGE, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CAXPY, CCOPY, CUNMQR, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       CQPT01 = ZERO
 | |
| *
 | |
| *     Test if there is enough workspace
 | |
| *
 | |
|       IF( LWORK.LT.M*N+N ) THEN
 | |
|          CALL XERBLA( 'CQPT01', 10 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       NORMA = CLANGE( 'One-norm', M, N, A, LDA, RWORK )
 | |
| *
 | |
|       DO 30 J = 1, K
 | |
|          DO 10 I = 1, MIN( J, M )
 | |
|             WORK( ( J-1 )*M+I ) = AF( I, J )
 | |
|    10    CONTINUE
 | |
|          DO 20 I = J + 1, M
 | |
|             WORK( ( J-1 )*M+I ) = ZERO
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
|       DO 40 J = K + 1, N
 | |
|          CALL CCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 )
 | |
|    40 CONTINUE
 | |
| *
 | |
|       CALL CUNMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK,
 | |
|      $             M, WORK( M*N+1 ), LWORK-M*N, INFO )
 | |
| *
 | |
|       DO 50 J = 1, N
 | |
| *
 | |
| *        Compare i-th column of QR and jpvt(i)-th column of A
 | |
| *
 | |
|          CALL CAXPY( M, CMPLX( -ONE ), A( 1, JPVT( J ) ), 1,
 | |
|      $               WORK( ( J-1 )*M+1 ), 1 )
 | |
|    50 CONTINUE
 | |
| *
 | |
|       CQPT01 = CLANGE( 'One-norm', M, N, WORK, M, RWORK ) /
 | |
|      $         ( REAL( MAX( M, N ) )*SLAMCH( 'Epsilon' ) )
 | |
|       IF( NORMA.NE.ZERO )
 | |
|      $   CQPT01 = CQPT01 / NORMA
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CQPT01
 | |
| *
 | |
|       END
 |