278 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| C> \brief \b SGETRF VARIANT: iterative version of Sivan Toledo's recursive LU algorithm
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               A( LDA, * )
 | |
| *       ..
 | |
| *  
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| C>\details \b Purpose:
 | |
| C>\verbatim
 | |
| C>
 | |
| C> SGETRF computes an LU factorization of a general M-by-N matrix A
 | |
| C> using partial pivoting with row interchanges.
 | |
| C>
 | |
| C> The factorization has the form
 | |
| C>    A = P * L * U
 | |
| C> where P is a permutation matrix, L is lower triangular with unit
 | |
| C> diagonal elements (lower trapezoidal if m > n), and U is upper
 | |
| C> triangular (upper trapezoidal if m < n).
 | |
| C>
 | |
| C> This code implements an iterative version of Sivan Toledo's recursive
 | |
| C> LU algorithm[1].  For square matrices, this iterative versions should
 | |
| C> be within a factor of two of the optimum number of memory transfers.
 | |
| C>
 | |
| C> The pattern is as follows, with the large blocks of U being updated
 | |
| C> in one call to STRSM, and the dotted lines denoting sections that
 | |
| C> have had all pending permutations applied:
 | |
| C>
 | |
| C>  1 2 3 4 5 6 7 8
 | |
| C> +-+-+---+-------+------
 | |
| C> | |1|   |       |
 | |
| C> |.+-+ 2 |       |
 | |
| C> | | |   |       |
 | |
| C> |.|.+-+-+   4   |
 | |
| C> | | | |1|       |
 | |
| C> | | |.+-+       |
 | |
| C> | | | | |       |
 | |
| C> |.|.|.|.+-+-+---+  8
 | |
| C> | | | | | |1|   |
 | |
| C> | | | | |.+-+ 2 |
 | |
| C> | | | | | | |   |
 | |
| C> | | | | |.|.+-+-+
 | |
| C> | | | | | | | |1|
 | |
| C> | | | | | | |.+-+
 | |
| C> | | | | | | | | |
 | |
| C> |.|.|.|.|.|.|.|.+-----
 | |
| C> | | | | | | | | |
 | |
| C>
 | |
| C> The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in
 | |
| C> the binary expansion of the current column.  Each Schur update is
 | |
| C> applied as soon as the necessary portion of U is available.
 | |
| C>
 | |
| C> [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with
 | |
| C> Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997),
 | |
| C> 1065-1081. http://dx.doi.org/10.1137/S0895479896297744
 | |
| C>
 | |
| C>\endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| C> \param[in] M
 | |
| C> \verbatim
 | |
| C>          M is INTEGER
 | |
| C>          The number of rows of the matrix A.  M >= 0.
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[in] N
 | |
| C> \verbatim
 | |
| C>          N is INTEGER
 | |
| C>          The number of columns of the matrix A.  N >= 0.
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[in,out] A
 | |
| C> \verbatim
 | |
| C>          A is REAL array, dimension (LDA,N)
 | |
| C>          On entry, the M-by-N matrix to be factored.
 | |
| C>          On exit, the factors L and U from the factorization
 | |
| C>          A = P*L*U; the unit diagonal elements of L are not stored.
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[in] LDA
 | |
| C> \verbatim
 | |
| C>          LDA is INTEGER
 | |
| C>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[out] IPIV
 | |
| C> \verbatim
 | |
| C>          IPIV is INTEGER array, dimension (min(M,N))
 | |
| C>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | |
| C>          matrix was interchanged with row IPIV(i).
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[out] INFO
 | |
| C> \verbatim
 | |
| C>          INFO is INTEGER
 | |
| C>          = 0:  successful exit
 | |
| C>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| C>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
 | |
| C>                has been completed, but the factor U is exactly
 | |
| C>                singular, and division by zero will occur if it is used
 | |
| C>                to solve a system of equations.
 | |
| C> \endverbatim
 | |
| C>
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| C> \author Univ. of Tennessee 
 | |
| C> \author Univ. of California Berkeley 
 | |
| C> \author Univ. of Colorado Denver 
 | |
| C> \author NAG Ltd. 
 | |
| *
 | |
| C> \date November 2011
 | |
| *
 | |
| C> \ingroup variantsGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.X) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO, NEGONE
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
|       PARAMETER          ( NEGONE = -1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               SFMIN, TMP
 | |
|       INTEGER            I, J, JP, NSTEP, NTOPIV, NPIVED, KAHEAD
 | |
|       INTEGER            KSTART, IPIVSTART, JPIVSTART, KCOLS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       INTEGER            ISAMAX
 | |
|       LOGICAL            SISNAN
 | |
|       EXTERNAL           SLAMCH, ISAMAX, SISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           STRSM, SSCAL, XERBLA, SLASWP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, IAND
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGETRF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Compute machine safe minimum
 | |
| *
 | |
|       SFMIN = SLAMCH( 'S' )
 | |
| *
 | |
|       NSTEP = MIN( M, N )
 | |
|       DO J = 1, NSTEP
 | |
|          KAHEAD = IAND( J, -J )
 | |
|          KSTART = J + 1 - KAHEAD
 | |
|          KCOLS = MIN( KAHEAD, M-J )
 | |
| *
 | |
| *        Find pivot.
 | |
| *
 | |
|          JP = J - 1 + ISAMAX( M-J+1, A( J, J ), 1 )
 | |
|          IPIV( J ) = JP
 | |
| 
 | |
| !        Permute just this column.
 | |
|          IF (JP .NE. J) THEN
 | |
|             TMP = A( J, J )
 | |
|             A( J, J ) = A( JP, J )
 | |
|             A( JP, J ) = TMP
 | |
|          END IF
 | |
| 
 | |
| !        Apply pending permutations to L
 | |
|          NTOPIV = 1
 | |
|          IPIVSTART = J
 | |
|          JPIVSTART = J - NTOPIV
 | |
|          DO WHILE ( NTOPIV .LT. KAHEAD )
 | |
|             CALL SLASWP( NTOPIV, A( 1, JPIVSTART ), LDA, IPIVSTART, J,
 | |
|      $           IPIV, 1 )
 | |
|             IPIVSTART = IPIVSTART - NTOPIV;
 | |
|             NTOPIV = NTOPIV * 2;
 | |
|             JPIVSTART = JPIVSTART - NTOPIV;
 | |
|          END DO
 | |
| 
 | |
| !        Permute U block to match L
 | |
|          CALL SLASWP( KCOLS, A( 1,J+1 ), LDA, KSTART, J, IPIV, 1 )
 | |
| 
 | |
| !        Factor the current column
 | |
|          IF( A( J, J ).NE.ZERO .AND. .NOT.SISNAN( A( J, J ) ) ) THEN
 | |
|                IF( ABS(A( J, J )) .GE. SFMIN ) THEN
 | |
|                   CALL SSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
 | |
|                ELSE
 | |
|                  DO I = 1, M-J
 | |
|                     A( J+I, J ) = A( J+I, J ) / A( J, J )
 | |
|                  END DO
 | |
|                END IF
 | |
|          ELSE IF( A( J,J ) .EQ. ZERO .AND. INFO .EQ. 0 ) THEN
 | |
|             INFO = J
 | |
|          END IF
 | |
| 
 | |
| !        Solve for U block.
 | |
|          CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', KAHEAD,
 | |
|      $        KCOLS, ONE, A( KSTART, KSTART ), LDA,
 | |
|      $        A( KSTART, J+1 ), LDA )
 | |
| !        Schur complement.
 | |
|          CALL SGEMM( 'No transpose', 'No transpose', M-J,
 | |
|      $        KCOLS, KAHEAD, NEGONE, A( J+1, KSTART ), LDA,
 | |
|      $        A( KSTART, J+1 ), LDA, ONE, A( J+1, J+1 ), LDA )
 | |
|       END DO
 | |
| 
 | |
| !     Handle pivot permutations on the way out of the recursion
 | |
|       NPIVED = IAND( NSTEP, -NSTEP )
 | |
|       J = NSTEP - NPIVED
 | |
|       DO WHILE ( J .GT. 0 )
 | |
|          NTOPIV = IAND( J, -J )
 | |
|          CALL SLASWP( NTOPIV, A( 1, J-NTOPIV+1 ), LDA, J+1, NSTEP,
 | |
|      $        IPIV, 1 )
 | |
|          J = J - NTOPIV
 | |
|       END DO
 | |
| 
 | |
| !     If short and wide, handle the rest of the columns.
 | |
|       IF ( M .LT. N ) THEN
 | |
|          CALL SLASWP( N-M, A( 1, M+KCOLS+1 ), LDA, 1, M, IPIV, 1 )
 | |
|          CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', M,
 | |
|      $        N-M, ONE, A, LDA, A( 1,M+KCOLS+1 ), LDA )
 | |
|       END IF
 | |
| 
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGETRF
 | |
| *
 | |
|       END
 |