339 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHPMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX*16 ALPHA,BETA
 | |
| *       INTEGER INCX,INCY,N
 | |
| *       CHARACTER UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16 AP(*),X(*),Y(*)
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHPMV  performs the matrix-vector operation
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are n element vectors and
 | |
| *> A is an n by n hermitian matrix, supplied in packed form.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the matrix A is supplied in the packed
 | |
| *>           array AP as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | |
| *>                                  supplied in AP.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | |
| *>                                  supplied in AP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX*16 array of DIMENSION at least
 | |
| *>           ( ( n*( n + 1 ) )/2 ).
 | |
| *>           Before entry with UPLO = 'U' or 'u', the array AP must
 | |
| *>           contain the upper triangular part of the hermitian matrix
 | |
| *>           packed sequentially, column by column, so that AP( 1 )
 | |
| *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | |
| *>           and a( 2, 2 ) respectively, and so on.
 | |
| *>           Before entry with UPLO = 'L' or 'l', the array AP must
 | |
| *>           contain the lower triangular part of the hermitian matrix
 | |
| *>           packed sequentially, column by column, so that AP( 1 )
 | |
| *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | |
| *>           and a( 3, 1 ) respectively, and so on.
 | |
| *>           Note that the imaginary parts of the diagonal elements need
 | |
| *>           not be set and are assumed to be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array of dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the n
 | |
| *>           element vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX*16
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX*16 array of dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *>           Before entry, the incremented array Y must contain the n
 | |
| *>           element vector y. On exit, Y is overwritten by the updated
 | |
| *>           vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.4.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX*16 ALPHA,BETA
 | |
|       INTEGER INCX,INCY,N
 | |
|       CHARACTER UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 AP(*),X(*),Y(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16 ONE
 | |
|       PARAMETER (ONE= (1.0D+0,0.0D+0))
 | |
|       COMPLEX*16 ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16 TEMP1,TEMP2
 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DBLE,DCONJG
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 6
 | |
|       ELSE IF (INCY.EQ.0) THEN
 | |
|           INFO = 9
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZHPMV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF (INCX.GT.0) THEN
 | |
|           KX = 1
 | |
|       ELSE
 | |
|           KX = 1 - (N-1)*INCX
 | |
|       END IF
 | |
|       IF (INCY.GT.0) THEN
 | |
|           KY = 1
 | |
|       ELSE
 | |
|           KY = 1 - (N-1)*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of the array AP
 | |
| *     are accessed sequentially with one pass through AP.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF (BETA.NE.ONE) THEN
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 10 I = 1,N
 | |
|                       Y(I) = ZERO
 | |
|    10             CONTINUE
 | |
|               ELSE
 | |
|                   DO 20 I = 1,N
 | |
|                       Y(I) = BETA*Y(I)
 | |
|    20             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IY = KY
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 30 I = 1,N
 | |
|                       Y(IY) = ZERO
 | |
|                       IY = IY + INCY
 | |
|    30             CONTINUE
 | |
|               ELSE
 | |
|                   DO 40 I = 1,N
 | |
|                       Y(IY) = BETA*Y(IY)
 | |
|                       IY = IY + INCY
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
|       IF (ALPHA.EQ.ZERO) RETURN
 | |
|       KK = 1
 | |
|       IF (LSAME(UPLO,'U')) THEN
 | |
| *
 | |
| *        Form  y  when AP contains the upper triangle.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(J)
 | |
|                   TEMP2 = ZERO
 | |
|                   K = KK
 | |
|                   DO 50 I = 1,J - 1
 | |
|                       Y(I) = Y(I) + TEMP1*AP(K)
 | |
|                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
 | |
|                       K = K + 1
 | |
|    50             CONTINUE
 | |
|                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
 | |
|                   KK = KK + J
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               JY = KY
 | |
|               DO 80 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(JX)
 | |
|                   TEMP2 = ZERO
 | |
|                   IX = KX
 | |
|                   IY = KY
 | |
|                   DO 70 K = KK,KK + J - 2
 | |
|                       Y(IY) = Y(IY) + TEMP1*AP(K)
 | |
|                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
 | |
|                       IX = IX + INCX
 | |
|                       IY = IY + INCY
 | |
|    70             CONTINUE
 | |
|                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|                   KK = KK + J
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when AP contains the lower triangle.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 100 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(J)
 | |
|                   TEMP2 = ZERO
 | |
|                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK))
 | |
|                   K = KK + 1
 | |
|                   DO 90 I = J + 1,N
 | |
|                       Y(I) = Y(I) + TEMP1*AP(K)
 | |
|                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
 | |
|                       K = K + 1
 | |
|    90             CONTINUE
 | |
|                   Y(J) = Y(J) + ALPHA*TEMP2
 | |
|                   KK = KK + (N-J+1)
 | |
|   100         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               JY = KY
 | |
|               DO 120 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(JX)
 | |
|                   TEMP2 = ZERO
 | |
|                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK))
 | |
|                   IX = JX
 | |
|                   IY = JY
 | |
|                   DO 110 K = KK + 1,KK + N - J
 | |
|                       IX = IX + INCX
 | |
|                       IY = IY + INCY
 | |
|                       Y(IY) = Y(IY) + TEMP1*AP(K)
 | |
|                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
 | |
|   110             CONTINUE
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP2
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|                   KK = KK + (N-J+1)
 | |
|   120         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHPMV .
 | |
| *
 | |
|       END
 |